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Abstract— Human hands are capable of many dexterous
grasping and manipulation tasks. To understand human levels
of dexterity and to achieve it with robotic hands, we constructed
an anatomically correct testbed (ACT) hand which allows for
the investigation of the biomechanical features and neural
control strategies of the human hand. This paper focuses on
developing control strategies for the index finger motion of
the ACT Hand. A direct muscle position control and a force-
optimized joint control are implemented as building blocks and
tools for comparisons with future biological control approaches.
We show how Gaussian process regression techniques can be
used to determine the relationships between the muscle and
joint motions in both controllers. Our experiments demonstrate
that the direct muscle position controller allows for accurate
and fast position tracking, while the force-optimized joint
controller allows for exploitation of actuation redundancy in
the finger critical for this redundant system. Furthermore,
a comparison between Gaussian processes and least squares
regression method shows that Gaussian processes provide
better parameter estimation and tracking performance. This
first control investigation on the ACT hand opens doors to
implement biological strategies observed in humans and achieve
the ultimate human-level dexterity.

I. INTRODUCTION

Human hands are capable of many dextrous grasping
and manipulation tasks. For example, with proper training
and practice we can learn to play musical instruments with
our hands, use chopsticks, and perform daily tasks such
as cooking and writing. However, none of the existing
robotic hands are capable of demonstrating human levels of
dexterity. Dexterity of movements is achieved in the human
hand in part due to the biomechanics of the hand and in part
due to the neuromuscular control. To be able to understand
and analyze human levels of dexterity, and to achieve it with
robotic hands we need to mimic the biomechanics as well
as the neuromuscular controls in the robotic hands.

We have recently completed the assembly of an anatomical
robotic hand, called Anatomically Correct Testbed (ACT)
Hand (Figure 1), with the following three research goals
in mind: (1) an experimental testbed to investigate the
biomechanics and neural control of human hand movements,
(2) a physical prototype to test new surgical techniques
for impaired hands and (3) a tele-manipulator for precision
tele-operation and prosthetics. Unlike other anthropomorphic
robotic hands [7], [4], [5], [15], [25], the ACT Hand is
anatomically correct. The local nonlinear interactions be-
tween the muscle excursions and joint movements are mim-
icked in the ACT Hand by bone shapes that match human
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Fig. 1. Anatomically Correct Test-bed (ACT) Hand. The skeletal structure
and tendon routing in each finger are anatomical. The hand is controlled by
DC motors that are located in the forearm and connected the tendons.

bones and by the properties of the tendon hood that con-
nects the actuators to the finger bones [35], [34], [11]. The
anatomical properties allow us to implement neuromuscular
control strategies without having to compensate, in control
software, for the differences in robotic hand structure and
human hand anatomy.

The next step is the development of control strategies
for the ACT Hand. We are interested in taking two distinct
approaches for the controller design for the ACT Hand. One
is to treat the ACT Hand strictly as a redundant robotic
system and control the motors to achieve the desired finger
motions and forces. Another approach is to implement the
neuromuscular controls observed in the human hands as
closely as possible in the ACT Hand. Our ultimate goal is to
investigate both of these approaches, and understand the rel-
ative advantages and disadvantages. In this paper we present
the control strategies based on the robotics perspective and
discuss the implications for developing biological controls.

With six to nine muscles devoted to move each finger hav-
ing four to five degrees of freedom, the human hand forms
a system with actuation redundancy. The web of tendons
connecting the hand muscles to the bones is arranged such
that most of the hand muscles are multi-articulate (i.e. each
muscle controls more than one joint). The Central Nervous
System (CNS) likely takes advantage of these biomechanical
properties in developing neuromuscular control strategies to
achieve manipulation dexterity [33], [22].

The biological data has shown that position as well as
force control are used during grasping tasks [32]. The passive



biomechanics of the hand is critical in achieving the stable,
dextrous movements and manipulation [17]. It is proposed
that humans resolve the actuation redundancy by modulating
the muscle forces in synergy either for simplicity of the
solution or to save energy [32], [2]. The joint stiffness
and end point impedance are controlled actively to avoid
errors [21] When we design the biological controller, we
intend to incorporate these facts found in the neuroscience
literature.

A great number of control schemes exist for the posi-
tion as well as the force control of robots with actuation
redundancy [8], [23], [29]. Nakanishi et al. have presented
a summary of the existing position and force control strate-
gies for operational space control of a robotic arm [24].
The existing strategies exploit the redundancy either to
optimize forces [14] and energy [9] or to satisfy contact
constraints [12]. There exist many examples of human-like
robot controls. Suzuki and Mayahara [31], and Tahara et
al [30]. present examples of position control strategies for
an anthropomorphic robotic shoulder joint and robotic arm,
respectively, which are actuated by linear muscles.

Researchers have also developed control strategies for
robotic hands that possess varying degree of anthropography.
Zollo et al. [37] have presented controls for position control
of finger which is under-actuated. Lee et al. [19] and Kim et
al. [16] have presented stiffness control strategies for a single
joint of a hand and for five fingers in simulation, respectively.
Matsuoka and Afshar [20] estimate and compare biological
and robotic solutions for the muscle forces for a given set of
dynamic joint movements. Redundancy resolution for hand
motion and force control for grasping has also been presented
in [28], [36].

As a first set of control strategies for the ACT hand, we im-
plemented two controllers: the direct muscle controller under
which we control the individual muscle positions to achieve
the desired finger position and the force optimized joint
controllers under which we control muscle forces determined
from joint torques necessary to achieve the desired finger
positions. Both are reasonable approaches from the robotics
perspective for the ACT hand control, and could likely act
as building blocks for the biological control investigation.

Key components of both controllers are the mapping from
joint angles to muscle lengths, and the derivative of this
mapping, the moment arm matrix [11]. Considering the com-
plex relationships between the ACT Hand joints and muscles
we implemented Gaussian processes to determine the joint
to muscle mappings. Gaussian processes are non-parametric
regression techniques that are extremely flexible and robust,
thereby providing the modeling capabilities necessary for
the ACT Hand [27]. Specifically, we show how Gaussian
process models can be used to learn the joint angle to muscle
length mappings and the moment arm matrix based on
example data. Our experimental evaluation demonstrates the
benefits of using Gaussian processes for modeling the ACT
Hand. We also evaluate and discuss the relative advantages
and disadvantages of the two types of controllers, and the
implications for designing a biologically inspired control

schemes. These investigations were carried out on the index
finger of the ACT hand.

II. ACT INDEX FINGER DESCRIPTION

In this section we give a brief overview of the biome-
chanics of the ACT index finger. More details can be
found in our earlier publications [35], [34], [11]. The finger
skeletal structure and the tendon routing mimic the human
counterparts. All four bones have human bone contours
which provide accurate tendon guidance. There are three
joints with a total of four degrees of freedom, namely from
proximal, MCP (metacarpal phalange) Ab-Ad, MCP flex, PIP
(proximal inter-phalange), and DIP (distal inter-phalange). A
human finger is controlled by 3 intrinsic muscles, namely,
PI (palmar interossei) , RI (radial interossei) and LUM
(lumbrical), and 4 extrinsic muscles, namely, EDC (extensor
digitorum communis), EIP (extensor indicis profundus), FDS
(flexor digitorum superficialis) and FDP (flexor digitorum
profundus) [6]. In the ACT Hand, six of the seven muscles
are realized by a brush-less DC motor. The muscle EDC
is equivalent to EIP for single finger control [6]. Tendons
are connected to the motor shafts after passing over pulleys.
Each motor is connected to a miniature controller (Barrett
Technology Inc. [3]) with an embedded photo-sensor and
an encoder wheel (with 114 ticks/deg). The motor position
can be provided at more than 500Hz per motor by a RTAI
(Real Time Application Interface) Linux machine. The force
generated in a tendon, F,, (i), is directly proportional to the
motor current I, (7):

Fni) = 27 4 1,0, ()

Tm
where, K- is the motor torque constant and 7., is the radius
of the motor shaft.

III. METHOD
A. Data Collection for Joint-Muscle Mappings

The two sources of data for the ACT index finger are the
Vicon motion tracking system for joint angle determination,
and the motors for muscle excursion and force data. The
Vicon motion capture system uses cameras to track small
reflective markers placed on the ACT index finger. Using
information on camera placement and a model of the ACT
index finger and marker locations, the system reconstructs
the angles for each of the four joints at 120Hz.

Because PI muscle primarily abduct/adduct the MCP joint
(and no other joints), the timing correlation between the PI
muscle excursion data and MCP joint Vicon data were used
to synchronize between the two systems. The ACT index
finger was moved around passively through the full range of
finger motions multiple times.

B. Moment Arm Matrix of the ACT Index Finger

In our previous work we have determined that, similar to
the human hand, the moment arm matrix for the ACT Hand
is non-constant and has nonlinear dependencies on the finger
configuration [11]. In the case of the ACT index finger, the



moment arm is defined by a matrix R of dimension 6 x 4.
The finger DOFs and the muscle excursions can be defined
to be related by functions f; as follows:

li = fi(0)

where [ is the vector of muscle excursions ( [ =

[l1,12,13,14,15,16]T) and 6 is a vector of finger joint angles
(@ = [01,02,03,04)7). Then the moment arm is defined as:

i=1,..,6, )

I=R0 3)

where,
ol; — 0f;

Ri;(0) = 96; — 06,

t1=1,..,6 and j7=1,....4. 4

In essence, R is simply the gradient of the function f;(8).

C. Mapping Between Joint Angles and Muscle Lengths

To get the mapping for the function f;(#), we use a
machine learning technique called Gaussian process (GP)
regression and standard least squares regression (LSR) as
baseline.

1) Least Squares Regression: The least squares technique
seeks to find the coefficients of a 3rd degree polynomial
which minimizes the 12-norm error. The variables in this
case are the joint angles, the output is muscle length. We
learn a separate set of coefficients for each muscle. The
parameter optimization is solved by QR decomposition. In
general, a third degree polynomial would have 35 terms,
however, after careful analysis of the data, some terms were
removed to improve the performance of the regression. We
also investigated polynomials of degrees higher than three,
but found that these lead to increased errors due to over-
fitting. Overall, polynomials have the advantage of being
relatively simple parametric functions while still producing
a good fit. Our analysis of mapping results proved that
polynomial functions produce a fit with low overall mean
error (< 1mm) [10]. The gradient of the learned polynomial
can be easily found by taking partial derivatives of the
parametric function. This gradient represents the moment
arm.

2) Gaussian Process Regression: Gaussian processes
(GP) are non-parametric techniques for learning regression
functions from sample data [27]. GPs have been used with
great success in robotics applications such as reinforcement
learning [13] and Bayesian filtering [18]. Assume that we
have n d-dimensional input vectors: X = [x1,X2, ..., X,]. A
GP defines a zero-mean, Gaussian prior distribution over the
outputs Y = [y1,y2, ..., ¥n] at these values:

p(Y | X) =N(Y;0, K+o0.1), (5)

The covariance of this Gaussian distribution is defined via a
kernel matrix, K, and a diagonal matrix with elements a%
that represent zero-mean, white output noise. The elements of
the n x n kernel matrix K are specified by a kernel function
over the input values: K[i, j] = k(x;,x;). By interpreting
the kernel function as a distance measure, we see that if

points x; and x; are close in the input space, then their
output values y; and y; are highly correlated.

The specific choice of the kernel function k& depends on
the application, the most widely used being the squared
exponential, or Gaussian, kernel:

k(x,x') = o e s 0IWEOT (©6)

The kernel function is parameterized by W and oy. The
diagonal matrix W defines the length scales of the process,
which reflect the relative smoothness of the process along
the different input dimensions and JJ% is the signal variance.
In our application, we wish to learn a mapping from
joint angles to muscle lengths. This is done by conditioning
Equation 5 on training data D = (X,Y), where X contains
joint angles, 6, and Y the corresponding muscle lengths,
[, collected during the training phase. It can be shown that
conditioning on training data and a test input x, results in the
following Gaussian predictive distribution over the output:

Py« [ %, D) = N (y4; GPy (x4, D) ,GPx (x:, D)) (7)
with mean
GP, (x., D) = k[[K + o317y (®)
and variance
GPs; (x., D) = k(x.,x.) — k' [K +021] k.. (9)

Here, k. is a vector of kernel values between x, and the
training inputs X: k. [i] = k(xx,x;). Note that the prediction
uncertainty, captured by the variance GPy;, depends on both
the process noise and the correlation between the test input
and the training inputs. Here, we do not consider the pre-
diction uncertainty but focus on the GP mean prediction (8).
As can be seen, the complexity of the GP mean prediction is
linear in the number of training points. In our experiments
we found that GP prediction is efficient enough for finger
control. If needed, however, more efficient predictions can
be generated by sparsification of the GP [26].

The hyperparameters 8, of the GP are given by the
parameters of the kernel function and the output noise:
0, = (o,,W,0y4). They can be determined by maximizing
the log likelihood of the training data:

0, = arg;nax log p(Y | X,0,). (10)

This optimization can be performed efficiently using tech-
niques such as conjugate gradient descent [27]. Finally, the
gradient of the GP mean prediction function (8) gives the
moment arm. For more details on GP the reader is referred
to [18].

D. Controller Design

In general the control problem for the ACT Hand is to
design controllers for the muscles to generate the desired
hand posture, and forces and stiffness that affect the task.
The task could be specified in a variety of ways, eg. in terms
of end point positions joint stiffness or joint dynamics. For
this paper, as a first try, we assume that we have desired joint
angles.
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Fig. 2. Schematic for the direct muscle control. In each time step, the
desired joint angles, 0., are mapped to desired muscle lengths, [,.. The
difference from the current muscle lengths, [, is fed into the PID controller
to determine the forces that directly control the muscles. A VICON tracking

system provides ground truth joint angles, 6,41, for evaluation purposes.

1) Direct Muscle Control: Figure 2 shows the schematics
for the direct muscle control. Under this scheme, for a desired
angle, 6., we determine the desired muscle lengths [, using
the mapping:

L = f(6,). (1)

The forward mapping function f is determined either by the
least squares method or by using GPs. Using the encoder
reading on each muscle the errors between the desired and
the current positions, [, is determined as:

Based on the errors we set up a PID controller for each
muscle to track the desired. Thus the muscle forces to applied
based on the muscle positions errors are:
P = Kpix AL+ Kpor AL+ Kns [AL(3)
t
where Kp;, Kp; and K, are the PID gains. The motor
currents are determined by using Equation 1.

This strategy is simple to implement as muscles are
tracked independently. However, errors in the direction of
muscle extension are not correctable with direct muscle
control as muscles can only pull. Also, generating specific
finger tip forces, necessary in grasping and manipulation, is
difficult with this scheme.

2) Force-optimized Joint Control: Figure 3 shows the
schematics for the force optimized joint torque control. This
scheme requires the determination of the current joint angles.
Since we do not have joint angle sensors (consistent with
hand biology), we generate the reverse mapping to find the
current joint angles using both the least squares method and
the Gaussian processes given the current muscle positions

0.=g(l)

The error in joint angles between the desired joint trajectory
6, and current joint angles @, is then determined by

(14)

Af=0,-0. 15)

We then set up a PID controller based on the angle errors
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Fig. 3. Schematic for the force-optimized joint control. In each time step,

the difference, A6, between the desired and estimated joint angles is fed into
a PID controller to determine the necessary joint torques, 74. The muscle
forces, Fin, needed to achieve these torques are computed via optimization
using the current moment arm matrix R(6.). The moment arm depends on
the current joint angle estimates, 6. These estimates are based on a reverse
mapping from muscle lengths to joint angles.

to calculate for the desired joint torque, Tqesrq, as follows:

Td:Kpg*AQ+KD9*AQ+K19*/AQ (16)
t
where Kpy, Kpg and Ky are the PID gains.

The muscles need to apply appropriate pulling forces Fi,
to generate the desired torques. As there are 6 muscles and
4 finger joints, determination of the muscle forces F, that
generate the desired joint torques 74 is a redundant problem.
We know that the moment arm matrix, 2, relates the muscle
forces to the joint torques as follows:

Tax1 = =Ry * (Fin)ex1- (17)

The moment arm matrix, R, is configuration dependent [11]
and is determined by taking partial derivatives of forward
mapping [, = f¢(6,) as described above (see Equation 4).
There are multiple combinations of the muscle forces that
can generate a specific joint torque. However, the muscles
cannot push which sets up a constraint on muscle forces. To
determine the muscle forces that generate the desired joint
torques we set up an optimization problem as follows:

determine F,,
with min(}" |7q + RT x F,,|)
0 § Fm(l> S FmMaz(Z)

(18)

with constraints

where F,,arq. 1S the vector of the maximum force generated
by the muscles. This formulation allows for the exploitation
of the muscle redundancy to set up biomechanical con-
straints. However, for this paper we have set up the opti-
mization with only the min-max constraints. The optimized
forces are determined by using a linear programming solver
at each time step of control.

For the force-optimized joint controls, we derived the
moment arm matrix, R, and current angles from the current
muscle lengths using the reverse mapping for each time step
in the controls. Since GP prediction requires more compu-
tational resources than a simple polynomial evaluation, it is
clear that using GPs will lead to a slower overall controller
loop. We will quantify this more fully in the results section.



TABLE I
MEAN ABSOLUTE MAPPING ERRORS WITH GP AND LSR (MM)

EI PI FDP LUM FDS RI
GP 0.1838 | 0.4193 | 0.1350 | 0.3192 | 0.1408 | 0.4567
LSR 0.7531 | 0.6615 | 1.2267 | 0.8082 | 0.4383 | 1.0320
IV. RESULTS

A. Validation of Mappings

Our first experiment tests the quality of the angle to
muscle length mapping using both GP and least squares
fitting. Figure 4 shows the difference between the least square
regression and GP when it was projected to EI muscle length
estimation. Table I shows the mean absolute error for all
muscle length excursions when tested on a data set of over
200,000 angles and muscle lengths combinations. The data
covers the physiological ranges of motion for all the finger
joints. The actual excursion length was recorded directly
from the encoder values, and the other estimations were
from the Vicon joint angle information translated to muscle
lengths. The GP approach shows better performance, but with
a small penalty on speed.
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Fig. 4. GP vs least squares mapping for EI during a typical finger motion.

B. Direct Muscle Control

Next we conducted a tracking experiment by controlling
the finger tip to move in a desired circular path by varying
the MCP Ab-Ad and MCP Flex angles. Fig. 5 shows the
desired trajectory for the angles against the muscle position
control results with least square and GP techniques. This
task was picked to show the combinational effect of both
flexion and ab/adduction errors. The root mean squared error
for this trajectory was 0.3233 radians using the least square
mapping. The error for GP mapping was 0.0965 radians. The
result using GP mapping is closer to the desired trajectory.

Figure 6 shows the desired and muscle lengths using GP
and least square mapping. The two plots seem similar at
first glance, however, the PI muscle has small but significant
difference between GP and least squares mapping. This error
(~ 3mm) is enough to cause the differences in behavior
shown in Figure 6. Since this trajectory was generated

04

Desired trajectory
03r —_—GP
- ==LSR

02

01

MCP flex (rad)

-04 I I I I L
-02 -01 0 0.1 02 03 04 05

MCP ab-ad (rad)

Fig. 5. MCP angles while moving the finger in a circular trajectory with
direct muscle control
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Fig. 6. Desired and actual muscle lengths while moving the finger in a
circular trajectory. Desired lengths are shown by the solid lines. Dashed
lines show muscles lengths actually obtained. Top plot shows the run made
using GP mapping, and the run with least squares mapping is shown below.

analytically, ground truth muscle excursions were unavailable
for comparison. The cycle rate for the main controller loop
using GP was 208 Hz while least squares performs at 250
Hz. The difference in speed between the GP and least squares
controller loop does not appear to affect the resultant finger
motions.

C. Force-optimized Joint Control

Next we conducted same tracking experiment by con-
trolling the fingertip to move in a desired square path by
varying the MCP Ab-Ad and MCP Flex angles. Fig. 7 shows
the desired trajectory for the angles against results from
implementing the force optimized joint control results with
least square and GP techniques. The root mean squared error
for this trajectory was 0.07 radians using the least square
mapping. The error for GP mapping was 0.1 radians.

Fig. 8 shows the computed muscle forces given the desired
torque at MCP joint. The desired torque was computed
using Equation 16 and the muscle forces were computed
with optimization set up in Equation 18. There are several
discrete muscle force changes that are commanded when the
desired joint torque changes its sign (e.g. see time ~ (30.5)
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Fig. 8. Torques and forces during finger tip rotation. Red, blue and green
lines show EI, FDP, and PI forces respectively.

seconds) due to the nature of the minimization equation. The
bottom figure shows the desired and the actual torques at the
MCP joint. The desired torque as described in Equation 16
and the actual torque is computed using the moment arm
mapping and the muscle forces as given in Equation 17. The
plots show that the optimization computed the correct muscle
force combinations to achieve the desired torque although
the desire torques are not matched precisely. Rapid changes
in the muscle forces are undesirable as these cause jerky
motions. These must be investigated further. The cycle rate
for the main controller loop using GP was 143 Hz while
least squares performs at 250 Hz

V. DISCUSSION
A. Gaussian Processes versus Least Square Regression

In our analysis, the GPs provided significantly better
position tracking than the least square regression technique.
As can be seen from the data [11], the relationship between
angles and muscle lengths are smooth, but highly non-linear
and complex. GPs are especially suitable for modeling these
mappings. In addition, moment arms can be computed from
the GP-based mappings as the gradients of the GP mean
function (8). One drawback of the GPs is the time it takes
to compute the output in the control loop. For the direct
muscle control, the GPs were used only once in mapping

the desired angles 6,. to desired muscle length [,., but for the
joint control, the GPs were used twice, once for mapping
current muscle lengths [. to current angles 6., and again to
obtain the moment arm used for force optimization. As we
incorporate more biologically correct terms, we will need to
make additional estimations that GPs would be useful for. We
will thus investigate the use of sparse GPs for more efficient
predictions [26].

Finally, a key advantage of GPs is their ability to generate
consistent uncertainty estimates for their predictions (see
Equation 9). Here, we do not take advantage of this ability.
In the future, incorporation of GP uncertainty will allow us to
build more robust controllers and to perform active learning
by choosing training points that minimize uncertainty.

B. Muscle Control vs. Joint Control

Controlling the muscle positions directly requires less
calculations in the control feedback loop and it results in
good position tracking. However, this scheme has a number
of limitations. Firstly, since tasks are defined in the joint
angle space the desired trajectories for the muscle length
control depend on the mappings between the joint angles
and the muscle lengths, and any error in the mappings are
not correctable. One solution to this problem is to use an
online finger joint tracking system to actively correct the
angle to muscle mappings similar to human visual feedback.
Secondly, since the muscles cannot push, any errors in
the extension of the muscles are not correctable without
coordinated counteraction by other muscles. Generating the
finger tip forces necessary in grasping and manipulation is
also difficult with the position control. And most importantly,
the neuromuscular controls for human hand requires control
of specific joint stiffness [1], [2] which is not possible with
the direct muscle position control.

The joint angle controller achieved more flexibility and
incorporation of control optimization that is related to the
biological control, but it was not possible to achieve a smooth
circular trajectory. There are many possibilities for correcting
this such as speeding up the GPs, getting force sensors,
etc. Another factor is that we ignored the finger and motor
dynamics, considering low finger mass (~ 20g) and low
gearing at the motor. Incorporating the full dynamics of the
finger, including the reflected motor inertias will improve our
controllers.

C. Redundant Control Optimization

The joint control allows for the utilization of actuation
redundancy in the finger. Determination of muscle forces to
generate the desired joint torques is a redundant problem
whose solution can be determined to match the neuromus-
cular control strategies [1], [2]. This approach allows for
the possibility of incorporating the hand biomechanics by
setting up additional constraints in the optimization problem.
For example, we can set up the control problem to optimize
on movement or muscle activation smoothness, specific use
of selected muscles, etc. We can also utilize the actuation



redundancy to modulate the finger stiffness while satisfying
the joint torque requirements.

D. Other Controllers and Comparison with the Biological
Control Strategies

In this paper, we only tried a direct muscle position
controller and a force-optimized joint controller for joint
angle tracking. To design a more comprehensive controller
other tasks need to considered. For example, it is important to
evaluate fingertip or contact-point force controller for object
interaction tasks and Cartesian fingertip controller for tracing
tasks. With the ACT Hand mechanical structure, we believe
that even these standard robotic controllers would allow more
dexterity than what has been possible in the past.

In parallel, we are also interested in implementing the
biological neural control strategies which are investigated in
our laboratory and in the literature. For example, we are
investigating the use of stiffness modulation for humans [1],
[2]. The stiffness control has been shown to utilize the
intrinsic muscles in a special way [21]. We will mimic
such control strategies to understand the advantage of the
biological control strategies.

Ultimately, we plan to compare the biological and engi-
neering control strategies side by side to compare the relative
advantages and disadvantages. While we currently believe
that the biological control is currently superior to a purely
robotic control, there may be engineering solutions that could
allow easier augmentation for disabled hand control repair or
prosthetic control.
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