
GP-BayesFilters: Bayesian Filtering Using Gaussian Process
Prediction and Observation Models

Jonathan Ko and Dieter Fox

Dept. of Computer Science & Engineering,
University of Washington,

Seattle, WA

Abstract— Bayesian filtering is a general framework for re-
cursively estimating the state of a dynamical system. The most
common instantiations of Bayes filters are Kalman filters (ex-
tended and unscented) and particle filters. Key components of
each Bayes filter are probabilistic prediction and observation
models. Recently, Gaussian processes have been introduced as a
non-parametric technique for learning such models from training
data. In the context of unscented Kalman filters, these models
have been shown to provide estimates that can be superior to
those achieved with standard, parametric models. In this paper
we show how Gaussian process models can be integrated into
other Bayes filters, namely particle filters and extended Kalman
filters. We provide a complexity analysis of these filters and
evaluate the alternative techniques using data collected with an
autonomous micro-blimp.

I. INTRODUCTION

Estimating the state of a dynamical system is a fundamen-
tal problem in robotics. The most successful techniques for
state estimation are Bayesian filters such as particle filters
or extended and unscented Kalman filters [13]. Bayes filters
recursively estimate posterior probability distributions over
the state of a system. The key components of a Bayes filter
are the prediction and observation models, which probabilis-
tically describe the temporal evolution of the process and the
measurements returned by the sensors, respectively. Typically,
these models are parametric descriptions of the involved
processes [13]. However, parametric models are not always
able to capture all aspects of a dynamical system.

To overcome the limitations of parametric models, re-
searchers have recently introduced non-parametric, Gaussian
process (GP) regression models [12] to learn prediction and
observation models for dynamical systems. GPs have been
applied successfully to the problem of learning predictive
state models [3, 4, 9]. The fact that GP regression models
provide uncertainty estimates for their predictions allows them
to be readily incorporated into particle filters as observation
models [2] or as improved sampling distributions [10]. Ko and
colleagues introduced GP-UKFs, which combine GP predic-
tion and observation models with unscented Kalman filters.
Using data collected with a robotic blimp they demonstrated
that GP-UKFs outperform parametric unscented Kalman filters
and that the performance of GP-UKFs can be increased by
combining GP models with parametric models [7].

In this paper we investigate the integration of Gaussian
Processes (GP) into different forms of Bayes filters. In addition
to GP-UKFs, the previously introduced combination with
unscented Kalman filters, we show how GP prediction and

observation models can be combined with particle filters (GP-
PF) and extended Kalman filters (GP-EKF). The development
of GP-EKFs requires a linearization of GP regression models,
which we derive in this paper. We furthermore perform a
thorough comparison of the performance of the different filters
based on simulation experiments and data collected by a
robotic blimp.

This paper is organized as follows. After providing the
necessary background on Bayesian filtering and Gaussian
processes, we introduce the different instantiations of GP-
BayesFilters in Section III. Section IV presents the experi-
mental evaluation. We conclude in Section V.

II. BACKGROUND OF GP-BAYESFILTERS

Before we describe the generic GP-BayesFilter, let us dis-
cuss the basic concepts underlying Bayes filters and Gaussian
processes.

A. Bayes Filters

Bayes filters recursively estimate posterior distributions over
the state xk of a dynamical system conditioned on all sensor
information collected so far:

p(xk|z1:k,u1:k−1) ∝

p(zk|xk)
∫
p(xk|xk−1,uk−1) p(xk−1|z1:k)dxk−1 (1)

Here z1:k and u1:k−1 are the histories of sensor measure-
ments and controls obtained up to time k. The term p(xk |
xk−1,uk−1) is the prediction model, a probabilistic model
of the system dynamics. p(zk | xk), the observation model,
describes the likelihood of making an observation zk given the
state xk. Typically, these models are parametric descriptions
of the underlying processes, see [13] for several examples.
In GP-BayesFilters, both prediction and observation models
are learned from training data using non-parametric, Gaussian
process regression.

B. Gaussian Processes for Regression

Gaussian processes (GP) are a powerful, non-parametric
tool for learning regression functions from sample data. Key
advantages of GPs are their modeling flexibility, their ability to
provide uncertainty estimates, and their ability to learn noise
and smoothness parameters from training data [12].

A Gaussian process represents posterior distributions over
functions based on training data. To see, assume we have a set
of training data, D = 〈X,y〉, where X = [x1,x2, ...,xn] is a

matrix containing d-dimensional input examples xi, and y =
[y1, y2, ..., yn] is a vector containing scalar training outputs yi.
A GP assumes that the data is drawn from the noisy process

yi = f(xi) + ε , (2)

where ε is zero mean, additive Gaussian noise with variance
σ2
n. Conditioned on training data D = 〈X,y〉 and a test input

x∗, a GP defines a Gaussian predictive distribution over the
output y∗ with mean

GPµ (x∗, D) = kT∗ [K + σ2
nI]−1y (3)

and variance

GPΣ (x∗, D) = k(x∗,x∗)− kT∗
[
K + σ2

nI
]−1

k∗. (4)

Here, k is the kernel function of the GP, k∗ is a vector defined
by kernel values between x∗ and the training inputs X , and
K is the n×n kernel matrix of the training input values; that
is, k∗[i] = k(x∗,xi) and K[i, j] = k(xi,xj). Note that the
prediction uncertainty, captured by the variance GPΣ, depends
on both the process noise and the correlation between the test
input and the training data.

The choice of the kernel function depends on the applica-
tion, the most widely used being the squared exponential, or
Gaussian, kernel:

k(x,x′) = σ2
fe
− 1

2 (x−x′)W (x−x′)T , (5)

where σ2
f is the signal variance. The diagonal matrix W

defines the smoothness of the process along the different input
dimensions.

The GP parameters θ = [W,σf , σn], describing the kernel
function (5) and the process noise (2), respectively, are called
the hyperparameters of the Gaussian process. These hyperpa-
rameters can be learned by maximizing the log likelihood of
the training data using numerical optimization techniques such
as conjugate gradient descent [12].

C. Learning Prediction and Observation Models with GPs

Gaussian process regression can be applied directly to
the problem of learning prediction and observation models
required by the Bayes filter (1). The training data for each
GP is a set of input-output relations. The prediction model
maps the state and control, (xk,uk), to the state transition
∆xk = xk+1−xk. The next state can then be found by adding
the state transition to the previous state. The observation
model maps from the state, xk, to the observation, zk. The
appropriate form of the prediction and observation training
data sets is thus

Dp = 〈(X,U), X ′〉 (6)
Do = 〈X,Z〉 , (7)

where X is a matrix containing ground truth states, and X ′ =
[∆x1,∆x2, ...,∆xk] is a matrix containing transitions made
from those states when applying the controls stored in U . Z
is the matrix of observations made when in the corresponding
states X .

The resulting GP prediction and observation models are then

p(xk|xk−1,uk−1) ≈
N (GPµ([xk−1,uk−1], Dp),GPΣ([xk−1,uk−1], Dp)) (8)

and

p(zk|xk) ≈ N (GPµ(xk, Do),GPΣ(xk, Do)) , (9)

respectively. The reader may notice that while these models
are Gaussians, both the means and variances are non-linear
functions of the input and training data. Furthermore, the
locally Gaussian nature of these models allows a very natural
integration into different instantiations of Bayes filters, as we
will describe in Section III.

GPs are typically defined for scalar outputs, and GP-
BayesFilters represent models for vectorial outputs by learning
a different GP for each output dimension. As a result, the
noise covariances GPΣ are diagonal matrices. Another issue to
consider is that GPs assume a zero mean prior over the outputs
of the functions. A direct ramification of this assumption is that
the GP predictions tend towards zero as the distance between
the test input and the training data increases. In practice, this
problem can be reduced by collecting sufficient training data
covering possible states, controls, and observations, and by
incorporating parametric models into the GP, as shown in [7].

III. INSTANTIATIONS OF GP-BAYESFILTERS

We will now show how GP models can be incorporated into
different instantiations of Bayes filters. Specifically, we present
algorithms for GP integration into particle filters, extended
Kalman filters, and unscented Kalman filters. For notation,
we will stick close to the versions presented in [13].

A. GP-PF: Gaussian Process Particle Filters

Particle filters are sample-based implementations of Bayes
filters. The key idea of particle filters is to represent posteriors
over the state xk by sets Xk of weighted samples:

Xk = {〈xmk , w
(m)
k 〉 | m = 1, . . . ,M}

Here each xmk is a sample (or state), and each w
(m)
k is

a non-negative numerical factor called importance weight.
Particle filters update posteriors according to a sam-
pling procedure [13]. Table I shows how this proce-
dure can be implemented with GP prediction and obser-
vation models. In Step 4, the state at time k is sam-
pled based on the previous state xmk−1 and control uk−1,
using the GP prediction model defined in (8). Here,
GP([xmk−1,uk−1], Dp) is short for the Gaussian represented by
N
(
GPµ([xmk−1,uk−1], Dp),GPΣ([xmk−1,uk−1], Dp)

)
. Note

that the covariance of this prediction is typically different for
each sample, taking the local density of training data into
account. Importance sampling is implemented in Step 5, where
each particle is weighted by the likelihood of the most recent
measurement zk given the sampled state xmk . This likelihood
can be easily extracted from the GP observation model defined
in (9). All other steps are identical to the generic particle filter

1: Algorithm GP-PF(Xk−1,uk−1, zk):

2: X̂k = Xk = ∅
3: for m = 1 to M do
4: sample xmk ∼ GP([xmk−1,uk−1], Dp)

5: w
[m]
k = N

`
zk; GPµ(xmk , Do),GPΣ(xmk , Do)

´
6: X̂k = X̂k + 〈xmk , w

[m]
k 〉

7: endfor
8: for m = 1 to M do

9: draw i with probability ∝ w[i]
k

10: add x
[i]
k to Xk

11: endfor
12: return Xk

TABLE I
THE GP-PF ALGORITHM.

algorithm, where Steps 8 through 11 implement the resampling
step (see [13]).

B. GP-EKF: Gaussian Process Extended Kalman Filters

In addition to the GP mean and covariance estimates used in
the GP-PF, the incorporation of GP models into the extended
Kalman filter requires a linearization of the GP function. For-
tunately, this linearization follows directly from the definition
of (3). For each output dimension, the derivative of the GP
mean function is:

∂ (GPµ (x∗, D))
∂(x∗)

=
∂(k∗)
∂(x∗)

T [
K + δ2

nI
]−1

y. (10)

As noted above, k∗ is the vector of kernel values between
the query input x∗ and the training inputs X . The partial
derivatives of the kernel vector function are

∂(k∗)
∂(x∗)

=

∂(k(x∗,x1))
∂(x∗[1]) . . . ∂(k(x∗,x1))

∂(x∗[d])

...
. . .

...
∂(k(x∗,xn))
∂x∗[1]) . . . ∂(k(x∗,xn))

x∗[d])

 , (11)

where n is the number of training points and d is the dimen-
sionality of the input space. The partial derivatives depend on
the kernel function used. For the squared exponential kernel
we get

∂(k(x∗,x))
∂(x∗[i])

= −Wiiσ
2
f (x∗[i]− x[i])e−

1
2 (x∗−x)W (x∗−x)T . (12)

(10) defines the d-dimensional Jacobian vector for a single
output dimension. The full lxd Jacobian of a prediction or
observation model is determined by stacking l Jacobian vectors
together, one for each of the output dimensions.

We are now prepared to incorporate GP prediction and ob-
servation models into an EKF, as shown in Table II. Step 2 uses
the GP prediction model (3) to generate the predicted mean µ̂k.
Step 3 sets the additive process noise, Qk, which corresponds
directly to the GP uncertainty. Gk, the linearization of the
prediction model, is extracted from the GP via (10). Step

1: Algorithm GP-EKF(µk−1,Σk−1,uk−1, zk):

2: µ̂k = GPµ([µk−1,uk−1], Dp)

3: Qk = GPΣ ([µk−1,uk−1], Dp)

4: Gk =
∂GPµ([µk−1,uk−1],Dp)

∂xk−1

5: Σ̂k = Gk Σk−1 G
T
k +Qk

6: ẑk = GPµ(µ̂k, Do)

7: Rk = GPΣ (µ̂k, Do)

8: Hk =
∂GPµ(µ̂k,Do)

∂xk

9: Kk = Σ̂k H
T
k (Hk Σ̂k H

T
k +Rk)−1

10: µk = µ̂k +Kk(zk − ẑk))

11: Σk = (I −Kk Hk) Σ̂k

12: return µk,Σk

TABLE II
THE GP-EKF ALGORITHM.

5 uses these matrices to compute the predictive uncertainty,
in the same way as the standard EKF algorithm. Similarly,
Steps 6 through 8 compute the predicted observation, ẑk, the
noise covariance, Rk, and the linearization of the observation
model, Hk, using the GP observation model. The remaining
steps are identical to the standard EKF algorithm, where Step 9
computes the Kalman gain, followed by the update of the mean
and covariance estimates in Steps 10 and 11, respectively.

C. GP-UKF: Gaussian Process Unscented Kalman Filters

The GP-UKF algorithm in Table III is restated for com-
pleteness of exposition [7]. The key idea underlying unscented
Kalman filters is to replace the linearization employed by the
EKF by a more accurate linearization based on the unscented
transform. To do so, the UKF generates a set of so-called
sigma points based on the mean and variance estimates of
the previous time step. This set, generated in Step 2, contains
2d+1 points, where d is the dimensionality of the state space.
Each of these points is then projected forward in time using
the GP prediction model in Step 3. The additive process noise,
computed in Step 4, is identical to the noise used in the GP-
EKF algorithm. Steps 5 and 6 are identical to the standard
unscented Kalman filter; they compute the predictive mean
and covariance from the predicted sigma points. A new set of
sigma points is extracted from this updated estimate in Step
7. The GP observation model is used in Step 8 to predict an
observation for each of these points. The observation noise
matrix, Rk, is set to the GP uncertainty in Step 9.

Steps 10 through 16 are standard UKF updates (see [13]).
The mean observation is determined from the observation
sigma points in Step 10, and Steps 11 and 12 compute
uncertainties and correlations used to determine the Kalman
gain in Step 13. Finally, the next two Steps update the mean
and covariance estimates, which are returned in Step 16.

D. GP-BayesFilter Complexity Analysis

This section examines the runtime complexity of the differ-
ent algorithms. In typical tracking applications, the number

1: Algorithm GP-UKF(µk−1,Σk−1,uk−1, zk):

2: Xk−1 =
`
µk−1 µk−1 + γ

p
Σk−1 µk−1 − γ

p
Σk−1

´
3: for i = 0 . . . 2n: X̄ [i]

k = GPµ
“

[X [i]
k−1,uk−1], Dp

”
4: Qk = GPΣ ([µk−1,uk−1], Dp)

5: µ̂k =
2nX
i=0

w
[i]
m X̄

[i]
k

6: Σ̂k =

2nX
i=0

w
[i]
c (X̄ [i]

k − µ̂k)(X̄ [i]
k − µ̂k)T +Qk

7: X̂k =

„
µ̂t µ̂t + γ

q
Σ̂k µ̂t − γ

q
Σ̂k

«
8: for i = 0 . . . 2n: Ẑ [i]

k = GPµ
“
X̂ [i]
k , Do

”
9: Rk = GPΣ (µ̂k, Do)

10: ẑk =

2nX
i=0

w
[i]
m Ẑ

[i]
k

11: Sk =
2nX
i=0

w
[i]
c (Ẑ [i]

k − ẑk)(Ẑ [i]
k − ẑk)T +Rk

12: Σ̂x,zk =

2nX
i=0

w
[i]
c (X̂ [i]

k − µ̂k)(Ẑ [i]
k − ẑk)T

13: Kk = Σ̂x,zk S−1
k

14: µk = µ̂k +Kk(zk − ẑk)

15: Σk = Σ̂k −Kk Sk KT
k

16: return µk,Σk

TABLE III
THE GP-UKF ALGORITHM.

n of training points used for the GP is much higher than
the dimensionality d of the state space. In these cases, the
complexity of GP-BayesFilters is dominated by GP operations,
on which we will concentrate our analysis. Furthermore, since
the ratio between prediction and observation evaluations is the
same for all algorithms, we focus on the prediction step of each
algorithm (the correction step is analogous).

Since GP-PFs need to perform one GP mean and variance
computation per particle, the overall complexity of GP-PFs
follows as

Cpf = M (Cµ + CΣ). (13)

The GP-EKF algorithm requires one GP mean and variance
computation plus one GP Taylor series expansion step:

Cekf = Cµ + CΣ + Ctse (14)

The GP-UKF algorithm requires one GP mean computation
for each sigma point. One GP variance computation is also
necessary per step. Since the UKF requires 2d+1 sigma points,
the complexity follows as

Cukf = (2d+ 1)Cµ + CΣ. (15)

To get a more accurate measure, we have to consider the
complexity of the GP operations. The core of each GP
mean prediction operation consists of a kernel evaluation (5)
followed by a multiplication (we treat (12) as computationally

equivalent to a kernel evaluation). We denote these costs
as Ckern and Cmult, respectively. The computation of the
mean function GPµ (x∗, D) defined in (3) requires n such
evaluations, one for each combination of the query point x∗
and a training point xi. In addition, this operation must be
done for each output dimension since we use a separate GP
to model each output dimension. We assume the number of
output dimensions is equal to the dimensionality of the state
space:

Cµ = nd (Ckern + Cmult) (16)

Note that the term
[
K + σ2

nI
]−1

y in (3) and (10) is inde-
pendent of x∗ and can be cached. The computation of the
covariance function GPΣ (x∗, D) given in (4) requires nd
additional multiplications given proper caching:

CΣ = nd Cmult, (17)

and similarly, the linearization of the GP, given in (12), also
requires nd multiplications:

Ctse = nd Cmult. (18)

The total costs in terms of kernel computations and multipli-
cations are tabulated below.

TABLE IV
COMPUTATIONAL REQUIREMENTS

Ckern Cmult

GPUKF nd(2d+ 1) nd(2d+ 2)
GPEKF nd 3nd
GPPF Mnd 2Mnd

Unfortunately, there is no way to compare kernel operations
directly to multiplications since various different kernels can
be used. However, analysis in these terms can still be useful.
First, the number of particles is the key determinant for the
complexity of the GP-PF. As can be seen from Table V, GP-PF
is not very competitive time-wise to the other filters. On the
other hand, GP-PF is the only algorithm which can perform
global localization. GP-UKF has roughly 2d times more kernel
computations than GP-EKF. Since the kernel computation is
generally much slower than a multiply operation, the cost for
the kernel operations will dominate in these two algorithms.

IV. EXPERIMENTS

A. Robotic Blimp Experiments

1) Testbed: The experimental testbed for evaluating the GP-
Bayes filters is a robotic micro-blimp. A custom-built gondola
is suspended beneath a 5.5 foot (1.7 meter) long envelope. The
gondola houses two main fans that pivot together to provide
thrust in the longitudinal (forwards-up) plane. A third motor
located in the tail provides thrust to yaw the blimp about the
body-fixed Z-axis. There are a total of three control inputs:
the power of the gondola fans, the angle of the gondola fans,
and the power of the tail fan.

Observations for the filters come from two network cam-
eras mounted in the laboratory. Observations are formed by

TABLE V
BLIMP TRACKING QUALITY

Tracking MLL p(mm) ξ(deg) v(mm/s) ω(deg/s) time(s)
algorithm
GPUKF 14.9±0.5 89±1.3 4.7±0.2 50±0.4 4.5±0.1 1.28±0.3
GPEKF 13.0±0.2 93±1.4 5.2±0.1 52±0.5 4.6±0.1 0.29±0.1
GPPF 9.4±1.9 91±7.5 6.4±1.6 52±3.7 5.0±0.2 449.4±21
paraUKF 10.1±0.6 111±3.8 7.9±0.1 64±1.2 7.6±0.1 0.33±0.1
paraEKF 8.4±1.0 112±3.8 8.0±0.2 65±1.6 7.5±0.2 0.21±0.1
paraPF -4.5±4.2 115±4.5 10.5±1.7 73±5.4 9.4±0.3 30.7±5.8

background subtraction followed by fitting an ellipse to the
remaining pixels. The observations are then the parameters of
the ellipse in image space.

A motion capture system is used to capture the ground
truth positions of the blimp as it flies. The VICON motion
capture (MOCAP) system tracks reflective markers attached
to the blimp as 3D points in space. This data is used to train
the GPs and parametric motion models, and to evaluate the
tracking performance of the various filtering algorithms. The
testbed software is written in a combination of C++ and MAT-
LAB. Gaussian process code is from Neil Lawrence [8]. All
experiments were performed on an Intel R© XeonTM running
at 3.40GHz.

2) Parametric Prediction and Observation Models: The
parametric motion model appropriate for the blimp was de-
scribed in detail in [7]. The state of the blimp consists of
position p, orientation ξ parameterized by Euler angles, linear
velocity v, and angular velocity ω. The parametric motion
model takes into account forces including gravity, buoyancy,
thrust, and drag. This model is discretized in time in order to
produce ĝ which predicts the next state given the current state
and control input.

The parametric observation model takes as input the six-
dimensional pose of the blimp within the camera’s coordinate
system. It outputs the parameters of an ellipse in the camera’s
image space. The ellipse parameters are generated based on a
shape model of the blimp.

3) Tracking Results: Experimental results were obtained
via 4-fold cross-validation. The data was broken up into 4
equally sized sections covering approximately 5 minutes of
blimp flight each. The algorithms were tested on each section
with the remaining sections used for learning of the GP
models and parameters for the physics based models. The
GP motion models were optimized using approximately 900
training points while the GP observation model used 800
points. The particle filters were run with 2000 particles.

Table V shows the tracking accuracy of the various filters.
Tracking accuracy is shown separately for position, rotation,
velocity, and rotational velocity. In addition, mean log likeli-
hoods (MLL) of the ground truth given the state estimate and
time per filter update are shown.

The three GP-Bayes filters have better accuracy in general
than their parametric Bayes filter counterparts. GP-UKF out-
performs GP-EKF by a small margin, however, the GP-EKF
is more than four times faster than the GP-UKF. GP-PF has
surprisingly poor accuracy. This is likely due to an insufficient
number of particles for the size of the state space.

−5

0

5

10

15

20

m
ea

n
lo

g
lik

el
ih

oo
d

(M
LL

)

0 10 20 30 40 50 60 70 80
0

20

40

60

pe
rc

en
ta

ge
 o

f f
ai

le
d

ru
ns

percentage of total training data

GPEKF
GPUKF

Fig. 1. GP-UKF shows better accuracy and robustness compared to GP-EKF
as the number of training points for the GP is reduced.

4) Training Data Sparsity: The next experiment tests the
tracking accuracy of the GP-EKF vs. GP-UKF as the number
of training points is reduced. For each level of data sparseness,
we perform cross validation by selecting 16 sets containing
the corresponding number of training data. These sets were
then tested on hold out data, just as in the four-fold cross
validation structure from the previous experiment. Results for
this experiment are shown using two measures. The first is the
percentage of runs that failed to accurately track the blimp.
A run is considered a failure if the MLL is less than −20,
since such runs have completely lost track of the blimp. The
other measure is the MLL of the remaining runs. There is a
fairly smooth degradation of accuracy for both methods. The
tracking only experiences drastic reduction in accuracy with
less than 15% of the total training points (≈ 130). This result
also shows GP-UKF to be more accurate and more robust than
GP-EKF at all levels of training data.

B. Synthetic Experiment

The previous experiment showed that GP-UKFs and GP-
EKFs have very similar behavior for sparse training data. Here,
we demonstrate the somewhat surprising result that GP-EKFs
can handle certain sparseness conditions better than GP-UKFs.

The filters use range observations to known landmarks to
track a robot moving in a square circuit. The robot uses the
following motion model:

p(t+ 1) = p(t) + v(t) + εp (19)
v(t+ 1) = v(t) + u(t) + εv, (20)

where p denotes position, v velocity of the robot, and u the
control input. εp and εv are zero mean Gaussian noise for
position and velocity, respectively. The robot receives as an
observation the range to one of the landmarks. Observations
are made for each landmark in a cyclic fashion.

The training data for the GPs is obtained from a training
run of the robot. The GPs for the motion model learn the
change in position and velocity from one time step to the

−100 0 100 200 300 400 500 600
−200

−100

0

100

200

300

400

500

Fig. 2. The robot is indicated by the square and the landmarks by the
circles. The dashed line represents the trajectory of the robot. The (green /
grey) shaded region indicates the density of training data. The five crosses
indicate sigma points of the GP-UKF during a tracking run. Notice that the
four outer points are in areas of low training data density.

next. This is similar to the modeling of the blimp dynamics.
The observation model uses as training data range information
and positions from the robot during the training run. That is,
observation training data only comes from locations visited
during the training run.

TABLE VI
TRACKING ERROR FOR SYNTHETIC TEST

p v
GPUKF 74.6±0.34 8.0±0.003
GPEKF 48.2±0.08 7.2±0.005
GPPF 43.8±0.07 6.0±0.003

As can be seen in Table V, the tracking performance of GP-
UKF is significantly worse than that of GP-EKF and GP-PF.
This is a result of the sigma points being spread out around
the mean prediction of the filter. In this experiment, however,
the training data only covers a small envelope around the
robot trajectory. Therefore, it can happen that sigma points are
outside the training data and thus receive poor GP estimates.
The GP-EKF does not suffer from this problem since all
GP predictions are made from the mean point which is well
within the coverage of the training data. GP-PFs handle such
problems by assigning very low weights to samples with
inaccurate GP models.

This experiment indicates that one must be careful when
using GP-UKFs to select training points that ensure broad
enough coverage of the operational space of the system.

V. CONCLUSIONS AND FUTURE WORK

Recently, several researchers have demonstrated that Gaus-
sian process regression models are well suited as components
of Bayesian filters. GPs are non-parametric models that can be
learned from training data and that provide estimates that take
both sensor noise and model uncertainty due to data sparsity
into account. In this paper, we introduced GP-BayesFilters,
the integration of Gaussian process prediction and observation
models into generic Bayesian filtering techniques. In addition
to the existing GP-UKF algorithm, we developed GP-PFs,
which combine GP models with particle filtering. Furthermore,

we showed how GP models can be linearized and incorporated
into extended Kalman filters. In addition to developing the
algorithms, we provide a complexity analysis of the different
instances of GP-BayesFilters.

In our experiments, all versions of GP-BayesFilters out-
perform their parametric counterparts. Typically, GP-UKFs
perform slightly superior to GP-EKFs, at the cost of higher
computational complexity. However, one experiment demon-
strates that GP-EKFs can outperform GP-UKFs when training
data is sparse and thus does not cover all sigma points
generated during tracking.

The additional operations needed for GP models can result
in prohibitive complexity, especially in the case of particle
filters. We thus conjecture that the best applications for GP-
BayesFilters are those where computational complexity is not
crucial, or where accuracy is very important. When efficiency
is important, the use of sparse GP models can greatly re-
duce the computational complexity of GP regression [12].
Furthermore, as shown in [6], Gaussian process models can
be combined with parametric models, resulting in further
improved accuracy.

ACKNOWLEDGMENTS

This work was supported in part by DARPA’s ASSIST
Program (contract numbers NBCH-C-05-0137).

REFERENCES

[1] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte
Carlo in Practice. Springer-Verlag, New York, 2001.

[2] B. Ferris, D. Hähnel, and D. Fox. Gaussian processes for signal strength-
based location estimation. In Proc. of Robotics: Science and Systems,
2006.

[3] A. Girard, C. Rasmussen, J. Quin̈onero Candela, and R. Murray-Smith.
Gaussian process priors with uncertain inputs – application to multiple-
step ahead time series forecasting. In Advances in Neural Information
Processing Systems 15 (NIPS). 2005.

[4] D. Grimes, R. Chalodhorn, and R. Rao. Dynamic imitation in a
humanoid robot through nonparametric probabilistic inference. In
Proc. of Robotics: Science and Systems, 2006.

[5] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. Most likely
heteroscedastic gaussian process regression. In Proc. of the International
Conference on Machine Learning (ICML), 2007.

[6] J. Ko, D. Klein, D. Fox, and D. Hähnel. GP-UKF: Unscented Kalman
filters with Gaussian process prediction and observation models. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2007.

[7] J. Ko, D.J. Klein, D. Fox, and D. Hähnel. Gaussian processes and
reinforcement learning for identification and control of an autonomous
blimp. In Proc. of the IEEE International Conference on Robotics &
Automation (ICRA), 2007.

[8] N.D. Lawrence. http://www.dcs.shef.ac.uk/˜neil/fgplvm/.
[9] K. Liu, A. Hertzmann, and Z. Popovic. Learning physics-based motion

style with nonlinear inverse optimization. In ACM Transactions on
Graphics (Proc. of SIGGRAPH), 2005.

[10] C. Plagemann, D. Fox, and W. Burgard. Efficient failure detection
on mobile robots using Gaussian process proposals. In Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI), 2007.

[11] V. Quoc, A. Smola, and S. Canu. Heteroscedastic Gaussian process
regression. In Proc. of the International Conference on Machine
Learning (ICML), 2005.

[12] C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine
learning. The MIT Press, 2005.

[13] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
Cambridge, MA, September 2005. ISBN 0-262-20162-3.

