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Abstract— Estimating the location of a mobile device or a
robot from wireless signal strength has become an area of highly
active research. The key problem in this context stems from the
complexity of how signals propagate through space, especially in
the presence of obstacles such as buildings, walls or people. In this
paper we show how Gaussian processes can be used to generate a
likelihood model for signal strength measurements. We also show
how parameters of the model, such as signal noise and spatial
correlation between measurements, can be learned from data
via hyperparameter estimation. Experiments using WiFi indoor
data and GSM cellphone connectivity demonstrate the superior
performance of our approach.

I. INTRODUCTION

Over the last years, the use of wireless signal strength
information to localize mobile devices or robots has gained
significant interest in several research communities. This is
mainly due to the increasing availability of 802.11 WiFi
networks and the importance of location information for
applications such as activity recognition, surveillance, and
context-aware computing.

What distinguishes location estimation using wireless signal
strength from many robotics localization problems is the
unpredictability of signal propagation through indoor environ-
ments. This unpredictability makes it difficult to generate an
adequate likelihood model of signal strength measurements.
Thus, the main focus of research in this area has been on the
development of techniques that can generate such models from
small amounts of calibration data collected in an environment.
Existing approaches to signal strength localization fall into
two main categories. The first class of techniques assume
knowledge about the locations of access points and then model
the propagation of signals through space to determine the
expected signal strength at any location based on the distance
from an access point [15], [1], [8]. Unfortunately, these para-
metric models have only limited accuracy, even when taking
information about the locations of walls and furniture into
account. The second class of techniques compute measurement
likelihoods using location-specific statistics extracted from
calibration data. These local statistics include histograms [7],
Gaussians [5], [4], [10], or even raw measurements [1]. Local
approaches typically result in higher localization accuracy if
enough calibration data is available. A main problem for these
models, however, is to generate likelihoods at locations for
which no calibration data is available. While several groups
have addressed this problem via spatial smoothing [10], [5],
[8], existing techniques have important limitations with respect

to considering all available information in a statistically sound
way.

In this paper we show how Gaussian processes (GP) [13]
can be used to overcome these limitations. GPs are non-
parametric models that estimate Gaussian distributions over
functions based on training data. GP regression has been
used with great success in a variety of applications, including
sensor networks [3], data visualization [9], and computer
animation [12]. GPs have several properties that make them
ideally suited for modeling signal strength measurements:

Continuous locations: GPs do not require a discretized rep-
resentation of an environment, or the collection of cali-
bration data at pre-specified locations. They are able to
predict signal strength measurements at arbitrary loca-
tions.

Arbitrary likelihood models: GPs are non-parametric re-
gression models and thereby able to approximate an
extremely wide range of non-linear signal propagation
models.

Correct uncertainty handling: In contrast to other regres-
sion models, GPs provide uncertainty estimates for pre-
dictions at any set of locations. This uncertainty takes
into account the local density of calibration data and the
noise of the data points.

Consistent parameter estimation: The parameters of GPs
can be learned from the calibration data via hyperpa-
rameter estimation. These parameters include the spatial
correlation between measurements and the measurement
noise.

The use of GPs for signal strength based location estimation
has been proposed by Schwaighofer and colleagues [14]. In
this paper we extend their work in several directions. More
specifically, we introduce a Bayesian filter for location estima-
tion that builds on a mixed graph / free space representation of
indoor environments. While hallways, stair cases, and elevators
are represented by edges in a graph, areas such as rooms are
represented by bounded polygons. Using this representation
we can model both constrained motion such as moving down
a hallway, or going upstairs, and less constrained motion
through rooms and open spaces. The likelihood of signal
strength measurements is extracted from a GP that is learned
from calibration data. In contrast to existing approaches, our
technique explicitly models the probability of not detecting
an access point, which can greatly increase the quality of the
global localization process.



In our experiments we demonstrate various features of GPs
for signal strength localization. We also show that the same
technique can applied to model GSM cellphone connectivity,
which results in significant improvements over existing out-
door localization techniques.

This paper is organized as follows. In the next section,
we will give an overview of GPs and show how they can
be used to model signal strength measurements. Then, in
Section III, we will introduce our mixed graph / free space
representation of indoor environments and describe a particle
filter for location estimation in such models. Related work will
be discussed in Section IV, followed by experimental results.
We conclude in Section VI.

II. GAUSSIAN PROCESSES FOR MODELING SIGNAL
STRENGTH MEASUREMENTS

We perform Bayesian filtering to estimate the location of a
person from signal strength measurements. A key component
of a Bayes filter is the observation model, which describes the
likelihood of making an observation at the different locations
in an environment [16]. Before we discuss the specifics of
our approach to localization, we will show how Gaussian
processes can be used to generate an observation model for
signal strength measurements from calibration data.

A. Preliminaries

GPs can be derived in different ways. Here, we follow
closely the function-space view described in [13]. Let D =
{(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of training samples
drawn from a noisy process

yi = f(xi) + ε, (1)

where each xi is an input sample in Rd and each yi is a target
value, or observation, in R. ε is zero mean, additive Gaussian
noise with known variance σ2

n. For notational convenience, we
aggregate the n input vectors xi into a d × n matrix X, and
the target values yi into the vector denoted y.

A Gaussian process estimates posterior distributions over
functions f from training data D. These distributions are
represented non-parametrically, in terms of the training points.
A key idea underlying GPs is the requirement that the function
values at different points are correlated, where the covariance
between two function values, f(xp) and f(xq), depends on
the input values, xp and xq. This dependency can be specified
via an arbitrary covariance function, or kernel k(xp,xq). The
choice of the kernel function is typically left to the user, the
most widely used being the squared exponential, or Gaussian,
kernel:

k(xp,xq) = σ2
f exp

(
− 1

2l2
|xp − xq|2

)
(2)

Here, σ2
f is the signal variance and l is a length scale that

determines how strongly the correlation between points drops
off. Both parameters control the smoothness of the functions
estimated by a GP. We will show in Section II-C how these
values can be learned from training data. As can be seen in

(2), the covariance between function values decreases with the
distance between their corresponding input values.

Since we do not have direct access to the function values,
but only noisy observations thereof, it is necessary to represent
the corresponding covariance function for noisy observations:

cov (yp, yq) = k(xp,xq) + σ2
nδpq (3)

Here σ2
n is the Gaussian observation noise and δpq is one if

p = q and zero otherwise. For an entire set of input values X,
the covariance over the corresponding observations y becomes

cov (y) = K + σ2
nI, (4)

where K is the n × n covariance matrix of the input values,
that is, K[p, q] = k(xp,xq).

Note that (4) represents a prior over functions: For any
set of values X, one can generate the matrix K and then
sample a set of corresponding targets y that have the desired
covariance [13]. The sampled values are jointly Gaussian with
y ∼ N (0,K + σ2

nI). More relevant, however, is the posterior
distribution over functions given training data X,y. Here, we
are interested in predicting the function value at an arbitrary
point x∗, conditioned on training data X,y. From (2) follows
that the posterior over function values is Gaussian with mean
µx∗ and variance σ2

x∗ :

p (f(x∗) | x∗,X,y) = N
(
f(x∗);µx∗ , σ

2
x∗

)
, where

µx∗ = k∗T
(
K + σ2

nI
)−1

y (5)

σ2
x∗ = k(x∗,x∗)− k∗T

(
K + σ2

nI
)−1

k∗ (6)

Here k∗ is the n×1 vector of covariances between x∗ and the n
training inputs X, and K is the covariance matrix of the inputs
X. As can be seen from (5), the mean function is a linear
combination of the training observations y, where the weight
of each observation is directly related to k∗, the correlation
between the test point x∗ and the corresponding training input.
The middle term is the inverse of the covariance function (4).
The covariance of the function estimate, σ2

x∗ , is given by the
prior covariance, k(x∗,x∗), minus the information provided
by the training data (via the inverse of the covariance matrix
K). Note that the covariance is independent of the observed
values y.

The predictive distribution in (5) and (6) summarizes the
key advantages of GPs for signal strength likelihood models.
In addition to providing a regression model based on training
data, the GP also represents the uncertainty at any location.

B. Application to Signal Strength Modeling

In the context of signal strength localization, the input
values X correspond to locations, and the observations y
correspond to signal strength measurements obtained at these
locations. The GP posterior is estimated from a calibration
trace of signal strength measurements annotated with their
locations. Assuming independence between different access
points, we estimate a GP for each access point separately.
During localization, the likelihood of observing a measurement
can then be computed at any location using (5) and (6).
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Fig. 1. Raw signal strength measurements for one access point

Fig. 2. Mean of GP prediction for one access point

Fig. 1 illustrates the GP signal strength model for one access
point on one floor of our test environment. The raw signal
strength measurements are shown in the upper left panel. The
size of the area covered by these measurements is 60 × 50
meters. Obviously, these measurements can not be represented
adequately by a radial signal propagation model. The mean
and variance of the GP posterior for these data points are
shown in Fig. 2 and Fig. 3, respectively. As can be seen, the
GP smoothly approximates the data points. The variance of
the prediction increases in areas that are not covered by the
data. The gap in the middle of the data, generating the “bump”
in the variance function, corresponds to a large, inaccessible
atrium.

This interpolation was achieved with values 17.8 and 8.2
for the parameters l and σ2

f of the covariance function k
defined in (2), and a signal noise σ2

n of 4.0. The impact of
these parameters is illustrated by Fig. 4, which shows the GP
mean values for the same data when using 17.8, 2.0 and 2.0
as parameter values. Obviously, it is extremely important to
determine adequate parameter values,

Fig. 3. Variance of GP prediction for one access point

Fig. 4. Mean of GP prediction with different covariance parameters

C. Hyperparameter Estimation

Fortunately, it is possible to learn these parameters based on
the training data X,y using hyperparameter estimation. More
specifically, we estimate the values of these parameters by
maximizing the log likelihood of the observations y. Let θ =
〈σ2

n, l, σ2
f 〉 denote the hyperparameters we wish to estimate.

The log likelihood of the observations is given by [13]

log p(y | X, θ) =

− 1
2
yT (K + σ2

nI)−1y − 1
2

log |K + σ2
nI| − n

2
log 2π,

(7)

which follows directly from the fact that the observations
are jointly Gaussian. (7) can be maximized using conjugate
gradient descent (LBFGS). To do so, we need to compute the
partial derivatives of the log likelihood.

∂

∂θj
log p(y | X, θ) =

1
2

tr
(

(K−1y)(K−1y)T ∂K

∂θj

)
. (8)

We now consider the subsequent partial derivatives of the
kernel function with respect to the kernel parameters. Con-
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sider, as an example, the Gaussian kernel function. The partial
derivatives of each element K[p, q] follow as

∂K

∂σ2
f

= 2σf exp

(
−1

2

(
d

l

)2
)

(9)

∂K

∂l
= σ2

f exp

(
−1

2

(
d

l

)2
)

d2

l3
(10)

∂K

∂σ2
n

= 2σnδpq, (11)

where d = xp − xq.
The most computationally complex step in the hyperparam-

eter estimation is the inversion of the covariance matrix K
in (8), which takes time O(n3), where n is the number of
training points. This inversion must be performed with each
new value θ, so an efficient gradient descent algorithm is key
for tractable optimization.

D. Zero Mean Offset

A Gaussian process is, by default, a zero mean process. In
absence of training data, the process tends to zero. For simple
data relations, the mean of the data can be subtracted before
training such that the process is centered around the mean.
However for complex data relations, a more nuanced approach
is required.

Modeling WiFi signal strength propagation is such a case
where the zero-mean is an issue. When far enough from the
access point, all readings should tend to zero. However, if we
have a large region near the access point without training data,
we would like the model not to tend to zero completely.

For WiFi, we assume a very simple offset model where
signal strength decreases linearly with distance from the access
point. Such a model takes the following form:

ss = m||x− xAP ||+ b (12)

where x is the input point, xAP is the location of the access
point, ||x−xAP || is the distance between the input and access
point, m is the propagation slope, b is the signal strength
recorded at the access point, and ss is the resulting signal
strength prediction. We estimate the value of the parameters
m, b, and xAP by minimizing the difference between ss
and actual training values with resepect to the parameters
using conjugate gradient descent. Clearly, real world data will
deviate from this simple model, but in practice the simple
model offers an improvement when confronted with sparse
training data.

III. BAYESIAN FILTERING ON MIXED GRAPH / FREE
SPACE REPRESENTATIONS

The goal of Bayesian localization is to estimate the posterior
over a person’s location, xt, conditioned on all sensor measure-
ments, z1:t, obtained through time t. At the core of each Bayes
filter is the following recursive equation, which is updated
whenever new sensor information becomes available [16]:

p(xt|z1:t) ∝ p(zt|xt)
∫

p(xt|xt−1)p(xt−1|z1:t−1) dxt−1 (13)

Fig. 5. Mixed representation of part of an indoor environment. Hallways,
stair cases, and elevators are modeled as edges on a connectivity graph. Rooms
and break-out areas are modeled as bounded free space areas.

Here, we have the special case that no control information u is
available. The term p(xt|xt−1) represents the motion model,
which we will describe in more detail after discussing our
spatial representation. The term p(zt|xt) is the measurement
likelihood model, which in our case describes the likelihood of
observing a set of signal strength measurements zt at a location
xt. As described in Section II-B, we use a Gaussian process to
generate this likelihood. As is done typically for such types of
sensors, we compute the likelihood of a complete set of read-
ings by multiplying the individual reading likelihoods [16].
However, since the GP models were learned independently
of each other, the resulting likelihood can become highly
peaked, which results in overconfident estimates. We take
this approximation into account by “smoothing” the likelihood
model:

p(zt[1:n]|xt) =

(
n∏

i=1

p(zt[i] | xt)

)γ

(14)

Here, n is the number of detected access points and γ ∈
[0 : 1] plays the role of a smoothing coefficient [6]. In our
experiments we set γ to 1/n, resulting in the geometric mean
of the individual likelihoods.

A. Mixed Graph / Free Space Representation

Our representation of a person’s locations is motivated
by the Voronoi motion graphs introduced by Liao and col-
leagues [11]. The key idea of their approach is to represent
indoor environments by graphs whose edges correspond to
the Voronoi graph of an environment. Liao et al. showed that
by constraining a person’s location and motion to edges on
such a graph, their system is able to adequately represent
typical motion patterns through indoor environments; resulting
in improved tracking and learning performance.
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While such constraints are adequate for hallway environ-
ments, they are not well-suited to model a person’s motion
through open spaces such as rooms or laboratories. We over-
come this limitation by introducing a mixed graph / free
space representation of indoor environments. While our novel
representation can be applied to both indoor and outdoor
environments, the focus of this paper is on indoor localization.
In outdoor environments, edges would correspond to streets
and walkways, and open spaces would correspond to parks or
parking lots.

Our representation is an enhanced graph structure G =
(E,R, V ), where E is a set of undirected edges ei that
correspond to hallways, stair cases, and elevators; the set R
contains polygonal regions ri that represent open spaces such
as rooms and break-out areas; and V are vertices vi that
connect edges and regions. The vertices play an important
role in the motion model of our tracking algorithm since
they correspond to choice points, which are locations where a
person has a discrete number of choices as to where to move
next. A representation of three floors of our test environment
is shown in Fig. 5. While the lines indicate hallways, elevators,
and a stair case, the shaded regions represent rooms and break-
out areas.

B. Particle Filter-Based Tracking

We implement Bayesian filtering in our representation using
particle filters, which represent and propagate posteriors using
sets St = {〈x(i)

t , w(i)t〉|i = 1, . . . , n} of weighted samples [2].
Each sample x

(i)
t is a potential location of the person, and each

has an associated importance weight w
(i)
t . Standard particle

filters realize Bayes filter updates by propagating samples
through time according to the following sampling procedure:
Re-sampling: Draw with replacement a random sample x

(i)
t−1

from the previous sample set according to the importance
weights w

(i)
t−1. Sampling: Generate a new particle x

(j)
t by

sampling from the motion model p(x(j)
t | x

(i)
t−1). Importance

sampling: Weight the sample by the measurement likelihood
p(zt | x(j)

t ).
When using a particle filter for signal strength localization,

the state xt represents a person’s location inside a building.
The incorporation of the Gaussian process likelihood model
is straightforward; it only requires the evaluation of (5) and
(6) at the corresponding sample location. In addition to the
location in the global reference frame of a building, each
particle contains information that enables us to relate the
person’s location to the enhanced graph structure of our mixed
representation. More specifically, each state is represented as

xt =
〈et, dt,mt〉 if location is on edge
〈rt, xt, yt, αt,mt〉 if location is in region,

(15)

where et is an edge identifier, dt indicates the distance
from the start of the edge, and mt ∈ {stopped,moving}
indicates the current motion state. Furthermore, rt denotes
a region and xt, yt, αt represent the person’s location and
heading within the region. The motion update of the particle
filter requires sampling from the motion model p(x(j)

t | x(i)
t−1).

To define the motion model for our enhanced graph structure,
we need to incorporate the following:

Motion state transitions p(mt | mt−1) represent the proba-
bility of motion state mt being moving or stopped
given the previous motion state. This 2 × 2 matrix
models a preference of staying in the previous state,
thereby avoiding too rapid switching between motion
states. Furthermore, our system uses two different motion
state transition matrices, one for particles on edges and
one for particles in regions. This enables the system to
model the fact that a person is far more likely to stop
when being in a room versus a hallway.

Edge transitions p(et | et−1) are stored at each vertex
of the graph. They represent preferences when moving
through the graph structure. For instance, when reaching
a vertex in a hallway, the probability of choosing the next
edge along the hallway is higher than the probability of
entering an edge that leads to a room. The graph also
contains special vertices that connect an edge to a region.
Whenever such a vertex is reached from an edge, then the
particle enters the region with probability one, and vice
versa.

Free space motion is applied to particles in regions. We
use a rather simplistic motion model that prefers straight
motion when the person is in the moving mode and
allows arbitrary rotations when the person is in the
stopped motion mode. Whenever a particle reaches the
boundary of a region, the particle is forced to stay in the
region by reversing its heading direction. The only way
to exit a region is via one of the vertices that connect
the region to an edge. In our model, the probability of
“hopping” onto such a vertex is inverse proportional to
the distance from the vertex.

Sampling from the resulting motion model is done as
follows. If x

(i)
t−1 = 〈et−1, dt−1,mt−1〉 is on an edge in

the graph, then we proceed similar to Liao et al. [11]: We
first sample the discrete motion state mt with probability
proportional to p(mt | mt−1). If mt = stopped, then xt

is set to be xt−1. Otherwise, if mt = moving, then we
randomly draw a motion distance d according to a Gaussian
velocity distribution. For this distance d, we determine whether
the motion along the edge results in a transition over the end
vertex of et−1. If not, then dt = dt−1 + d and et = et−1.
Otherwise, if the end vertex is connected to other edges, then
we set dt = dt−1 +d−|et−1| and the next edge et is sampled
with probability p(et | et−1). If the end vertex is connected
to a region rt, then the next state is initialized with random
heading αt and with location xt, yt within this region, drawn
from a Gaussian with mean at the entry vertex.

If x
(i)
t−1 = 〈rt−1, xt−1, yt−1, αt−1,mt−1〉 was already in

a region, then we first sample whether or not the particle
exits the region. This sampling is done inverse proportional
to the distance between 〈xt−1, yt−1〉 and the closest vertex
connected to the region. If the particle exits the region, then
its location is initialized at the start of the edge connected
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to the corresponding vertex. Otherwise, we first sample the
motion state mt and corresponding motion distance d. The
new position 〈xt, yt〉 is then determined based on a straight
motion starting at 〈xt−1, yt−1〉 in direction αt−1. If the motion
state is moving, then αt is sampled from a Gaussian with
mean at αt−1, otherwise, αt is sampled uniformly from [0 :
2π].

IV. RELATED WORK

Several location estimation techniques model signal strength
measurements by their propagation through space [15], [1],
[8]. They assume an exponential attenuation model for wire-
less signals, and use this path loss to determine likelihoods
based upon distance from an access point, whose location is
assumed known. [15], [1] showed how information about the
location and material of walls and furniture inside buildings
can be used to better estimate path loss. Even with such infor-
mation, however, the accuracy of signal propagation models
is limited due to the inherent unpredictability of how signals
propagate through indoor environments.

Alternative techniques ignore signal attenuation and instead
compute likelihoods from location-specific statistics compiled
from training data. While such techniques require more train-
ing data, they are able to represent arbitrary likelihood models,
which typically results in better localization performance. In
order to generate a probabilistic likelihood model, Ladd and
colleagues [7] used histograms over measurements collected
at a fixed set of locations in an office environment. They
later showed that replacing the histograms by Gaussians re-
quires smaller training sets and results in better localization
performance [4]. Howard and colleagues [5] show how spa-
tial smoothing on a discrete grid of points can significantly
improve the quality of a sensor model, especially when the
training data contains gaps. However, they do not show how
to estimate model parameters, and their technique does not
estimate the uncertainty in the measurement prediction, which
is crucial for adequate likelihood models. Recently, Letchner
et al. [10] introduced a hierarchical Bayesian technique that
incorporates a signal propagation model via hyperparameters
in order to estimate Gaussian likelihoods on a grid. An
important aspect of this method is that the prediction certainty
takes number of training points into account. However, the
spatial smoothing of this technique does not correlate the
signal strengths measured at neighboring locations.

In contrast to our approach, all these existing techniques rely
on a pre-specified set of discrete locations; they are not able
to adequately incorporate training data collected at arbitrary,
continuous locations. Furthermore, none of these approaches
is able to interpolate between data points while correctly
estimating the uncertainty resulting from the interpolation. Our
approach, on the other hand, is able to naturally interpolate
between continuous data points even in 3D environments,
while still being able to estimate the resulting uncertainties
in predictions.

In [14], Schwaighofer and colleagues showed how to apply
Gaussian processes to modeling signal strength measurements.

They achieved 10m location accuracy based on DECT wireless
phone connectivity, without performing any temporal inte-
gration of sensor information. Our work goes beyond their
technique in several aspects: We show the applicability of GPs
for GSM connectivity and WiFi based localization in large
scale, structured environments. To do so, we introduce a novel
Bayesian filter for location estimation that builds on a mixed
graph / free space representation of indoor environments.
This representation combines the advantages of graph-based
tracking [11] with the flexibility of modeling arbitrary paths
through free space.

V. EXPERIMENTAL RESULTS

In our experiments we evaluate Gaussian processes for
signal strength localization using WiFi indoor data and GSM
connectivity data.

A. Setup of Indoor Experiments

Our test environment consists of the three floors shown in
Fig. 5. To collect calibration data, we used an iPAQ hx4705
PDA with a built in wireless device polling WiFi signal
strength every 0.5 seconds. The ground truth locations were
estimated based on manual annotation of waypoints using the
iPAQ during data collection. The path was then estimated
based on linear interpolation between these waypoints, thus
assuming constant velocity.

The calibration data was collected during one hour of walk-
ing through the environment, covering all rooms, hallways,
elevators, and stair cases shown in Fig. 5. All told, the data
referenced 75 unique access points, visiting 54 rooms. The
test data consisted of one hour of trace data, covering about
3 km of travel distance and spread across ten distinct traces.
This data was collected during different times within two days.
During test data collection, the person used the elevators and
stair cases, moving through 30 different rooms, resulting in
a total of 47 room visits. The ordering of rooms visited was
generated by a random ordering of available rooms.

To learn the hyperparameters of the GP, we randomly
sampled 300 data points for each access point. We then used
the gradient descent technique described in Section II-C to find
the global parameter settings that minimized the negative log-
likelihood of the training data of all access points. To avoid
local minima, we used randomly selected start values over
multiple iterations. This learning process took typically less
than one hour on a standard desktop PC. A typical sensor
model generated with the trained hyperparameters is shown in
Fig. 2.

Once learning converged, we used the trained hyperparame-
ters to generate the GP model. For this purpose, we randomly
drew 700 samples from the training data of each access point
and computed the

(
K + σ2

nI
)−1

y term used for the mean and
variance of the likelihood model given in (5) and (6). This
step, which was dominated by the inversion of the 700× 700
covariance matrix, took typically 30 minutes for the entire set
of access points.

6



Fig. 6. Ground truth path (red / grey) and most likely particle path estimate
(black) for one of the test traces.

For localization, we used a particle filter with 200 particles.
At every update of the filter, the likelihood of each signal
strength measurement was computed for each particle by
evaluating the GP for that particle’s location. The complexity
of this update is O(nm), where m is the number of particles
and n is the number of calibration points. The particle filter
ran in real time on a standard PC.

B. Indoor WiFi Localization Accuracy

To evaluate the accuracy of our localization algorithm, we
compared at each iteration the particle with the highest weight
to the ground truth position. The average error over the 3 km
of test data was 2.12 meters. We additionally compared the
complete trajectory of the most likely particle at the end of
each run to the ground truth locations. One of these paths
is shown in Fig. 6. The error of the most likely trajectories
was only 1.69 meters on average. We believe that these error
values are among the best reported in the literature. They were
achieved under extremely challenging localization conditions:
the person moved constantly through the building; entering
rooms, taking stairs and elevators.

In order to assess the quality of the localization process
on a more qualitative scale, we also evaluated the topological
correctness of the path estimated by the most likely particle.
These results are summarized in the following table:

% correct room % wrong room % hallway
Ground truth in room 81 17 2
Estimate in room 83 14 3

TABLE I

The first row evaluates the accuracy when the person was
actually in a room against the path prediction of the most likely
particle. As can be seen, the system confuses a room with its
neighboring rooms and hallways in less than 20% of the time
spent in rooms. The second row evaluates the accuracy when
the most likely particle path is in a room against the ground
truth location. Again, the error rate for the particle is less
than 20%. Note that further smoothing could be applied as
appropriate to regularlize discontinuities in the location trace.

We additionally evaluated the sequence of rooms visited
by the most likely particle path during the test traces. We

compared this sequence against the ground truth room se-
quence with a string edit distance. Specifically, we consider
the number of additions or deletions of rooms to match ground
truth. Over our ten evaluation traces, we had a total edit
distance of only 10, suggesting that our path misclassifies
approximately one room per trace; either visiting a room that
was not in the ground truth sequence, or missing a room that
was actually visited.

C. Dealing with Sparse Data

To evaluate the ability of GPs to deal with sparse data, we
removed the training data collected in 25 out of the 54 rooms
(the test traces visited 10 of these rooms). We then performed
the same localization experiments as done for the complete
training data. In all but one of the 10 test traces, the accuracy
was virtually indistinguishable from the results achieved with
the complete data. In only one of the 10 traces did the filter
lose track, resulting in a path error of 16m.

These results show that the GP is able to accurately ex-
trapolate the signal strength model into rooms for which no
training data is available at all, especially in combination with
a simple zero mean offset model. We have not seen any reports
of such a capability in the literature.

D. GSM Localization

The second experiment is a wide-area localization using
GSM signal information. For the experiment we collected
data using a standard GPS unit (Sirf III) and an Audiovox
SMT5600 mobile phone. The mobile phone is able to collect
information of the connected cell tower as well as the up to
eight neighboring cells. The information includes a unique
identifier for each cell and the corresponding signal strength.
The training data was collected over an area of 465 square
kilometers, driving for 208 hours (see Table II for details).

Training Data Test Data
Downtown Residential Suburban

Duration 208hr 70min 80min 89min
Distance 4350km 24km 38km 51km
Dimension 25.0x18.6km 2.2x2.1km 2.4x4.4km 4.5x5.5km

TABLE II

In addition to the GPS unit, which was mounted on top of
the car roof, we put three phones on the dashboard. Each of the
phones was connected to a different cell phone provider (ATT,
Cingular, and T-mobile). In addition, we collected three test
traces in different areas of town, chosen to cover different cell
tower densities. The density of cell towers is important as a
cell tower can theoretically be seen at distances of up to 35km.
Therefore, GSM signal strength is by far not as discriminative
as WiFi signal strength.

We compared the results achieved with our GP with other
techniques for localization. The simplest one is the centroid
technique where the estimated position is the average of
the locations of the seen cell towers. The weighted centroid
approach uses additional weights for the position of the seen
cell tower corresponding to their current signal strength. In
dense areas these techniques can estimate the location within
a comparable accuracy, but fail in less dense areas (see
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Fig. 7. The left image shows the measurements for one cell tower. The color
of the measurements corresponds to the signal strength. The right image shows
the GP mean estimate of the signal strength.

Technique Median Error in m
Downtown Residential Suburban

Centroid 232 1209 612
Weighted Centroid 184 765 561
Fingerprinting 94 255 293
Gaussian Processes 128 208 236

TABLE III

Table III). The third technique is fingerprinting [1]. The basic
idea here is to mark every location with a unique set of
cell tower identifications and signal strengths. The current
measurement is compared with the database of all fingerprints
and the location of the fingerprint that corresponds at most to
the measurements is then chosen. Fingerprinting needs dense
training coverage as it is not able to localize in areas that
are not included in the training data. Table III shows the
accuracy of this technique which is comparable to the GP
based technique and slightly better in the downtown area. This
area has the highest density of cell towers. This advantage will
be mitigated when evaluated in sparse training environments,
where GPs outperform fingerprinting techniques.

VI. CONCLUSIONS

We presented Gaussian processes for localization based on
signal strength measurements. GPs are ideally suited for repre-
senting the complex likelihood models of such measurements.
They overcome various limitations of previous techniques:
they do not rely on a discrete representation of space, they
are non-parametric and can thus represent arbitrary likelihood
models, they correctly represent uncertainty due to sparse
training data, and they enable the consistent estimation of
hyperparameters.

We show how to incorporate a GP likelihood model into a
Bayesian filter operating in a novel representation of indoor
environments. This representation combines a graph structure
with free space regions. Our representation allows the Bayes
filter to constrain a person’s path when moving through
hallways or elevators while allowing for free movement in
open areas. Our experiments show that the resulting system
can accurately track a person moving through a large indoor
environment. Furthermore, the GP is able to accurately predict
WiFi measurements in rooms that were not visited in the

training phase. We also present results in large scale outdoor
environments using GSM signal strength. We believe that
the results achieved with our approach are superior to those
presented in the literature so far.

One of the main problems of GPs is the complexity of
model learning when using large data sets (≥ 800 data points).
Fortunately, there exist various sparse approximations for GPs
and we are currently investigating their use. We strongly
believe that GP regression can be applied successfully to
various robotics problems, including robot localization [5] and
mobile sensor networks [3]. We are additionally investigating
the use of GPs for WiFi-SLAM, where a signal strength map
is generated by moving through an unknown environment.
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