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Abstract extracted from geographic databases, including information
In this paper we define a general framework for ac- ~ @Pout the kinds of businesses in various locations; (3) sequen-
tivity recognition by building upon and extending .t|al information such as WhICh activity follows which activ-
Relational Markov Networks. Using the example ity; and (4) global constraints such as the number of different
of activity recognition from location data, we show homes or workplaces. Additionally, it uses data collected by
that our model can represent a variety of features other users so as to improve the _classmcatlon of a specific
including temporal information such as time of user’s activities. All these constraints amft for example,
day, spatial information extracted from geographic on some_dgys a person may do something unusual, such as go
databases, and global constraints such as the num- toa movie m_the middle ofawquday. Furthermore, the norm
ber of homes or workplaces of a person. We de- for some |nd|\_/|duals may be different than our genera}l com-
velop an efficient inference and learning technique ~ Monsense prior: for example, some people work two jobs, or
based on MCMC. Using GPS location data col- s_huttle betwgen two different homes. Ip is necessary to use a
lected by multiple people we show that the tech- rlch and flexible language to robustly integrate suqh a wide
nique can accurately label a person’s activity loca- variety of both Ioca_l and global pro_bablllsnc constraints.
tions. Furthermore, we show that it is possible to Our system builds upon previous work on extracting
learn good models from less data by using priors places from traces of users’ movements, gathered by GPS or
extracted from other people’s data. other localization technologid¢#shbrook and Starner, 2003;
Hariharan and Toyama, 2004; Liab al, 2004. Our work
goes beyond theirs in that our system also recognizes the
1 Introduction activities associated with the places. Moreover, previous
approaches to modeling personal movements and place
patterns require a large amount of training data from each
ser, and cannot be generalized to new places or new users.
y contrast, our relational approach requires less individual
éraining data by leveraging data collected by others. In
summary, the contributions of this paper are:

Activity recognition and context-aware computing are gain-
ing increasing interest in the Al and ubiquitous computing
communities. Most existing systems have been focused o
relatively low level activities within small environments or
during short periods of time. In this paper, we describe
system that can recognize high level activitiesg( work-
ing, shopping, and dining out) over many weeks. Our system 1. A general framework for sensor-based activity
uses data from a wearable GPS location sensor, and is able to recognition based on Relational Markov Networks
identify a user’s significant places, and learn to discriminate ~ (RMNSs) [Taskaret al, 2004, which are both highly
between the activities performed at these locations — includ-  expressive and well-suited for discriminative learning;
ing novel locations. Such activity information can be used in 2. An extension of RMNs to incorporate complex, global
many applications. For example, it could be used to automat- features usin@ggregationsand|abe|-specific C|iques
ically instruct a user’s cell phone not to ring when dining at a 3. Efficient Markov-chain Monte-Carlo (MCMC) algo-
restaurant, or it could support home rehabilitation of people it s for inference and learning in extended RMNs
suffering from traumatic brain injuridsSalazaret al, 2004 and in particular, an MCMC algorithm smultaneously '
by providing automatic activity monitoring. Beyond estimat- evaluate a Iikeliﬁood function and its gradient;
ing high-level activity categories, our system can be expanded o . ' :

4. Positive experimental results on real data from multiple

to incorporate additional sensor information, thereby recog- ™ biects. includi id that :
nizing fine-grained indoor household tasks, such as those de-  SUPIECLS, INCluding evidence that we can Improve accu-
racy by extracting priors from others’ data.

scribed in[Philiposeet al.,, 2004.

Because behavior patterns can be highly variable, a reliabl€his paper is organized as follows. We will introduce our
discrimination between activities must take several sourceeelational activity model in Section 2. Inference and learning
of evidence into account. Our system considers (1) tempowill be discussed in Section 3, followed by experimental eval-
ral information such as time of day; (2) spatial information uations. Conclusions and future work are given in Section 5.



2 The Relational Activity Model plate must share the same weigits. The resulting cliques

In this section we first discuss RMNs and our extensionsfacwnze the conditional distribution as

: S 1
Then we show how to use them for modeling activities. ply |x) = 709 IT II ¢c(ve) )
2.1 Relational Markov Networks )
RMNs are extensions of Conditional Random Fields (CRFs), ) II I expiwé-feve)}
which are undirected graphical models that were developed CeC veeC

for labeling sequence dalhafferty et al, 2001]. CRFs are 1 -

discriminative models that have been shown to out-perform = 7 exp{w’ - f}, 3)
generative approaches such as HMMs and Markov random

fields in areas such as natural language procedkimiferty  where the normalizing partition functionZ(x) =
etal, 200 and computer visiofKumar and Hebert, 2003 > [ccc [1y/ co ¢c(ve).  (3) follows by moving the
RMNs extend CRFs by providing a relational language forproducts into the exponent and combining all summations
describing clique structures and enforcing parameter sharingto w andf.

at the template level. Thereby RMNs are an extremely flex-

ible and concise framework for defining features that can b@.2  Relational Activity Models

used in the activity recognition con'Fext. We will now describe our relational activity models. Even
An RMN consists of three parts: sthemat for the do- 14,9k we illustrate the concepts using the example of
main, a set ofelational clique templates, and correspond- |, 4iion-hased activity recognition, our model is very flexible
ing potentials®. The schema’ specifies the set aflasses  onq can be applied to a variety of activity recognition tasks.
(i.e. entity types) and attributes in each class. An attribute The schema for activity recognition based on temporal and

could be a content attribute, a label attribute, or a referencgnaiia| patterns is shown in Fig. 1(a). Itincludes three classes:
attribute that specifies reference relation among the classe ctivity, Place andTransition

An instantiation of a schema specifies the set of entities 5 qyir - Activity is the central class in the domain. Its at-
for each class and the values of all attributes for each entltF

ceC veel

. o : ibute Labelis the only hidden variable. The set of possible
In our context an instantiation consists of the sequence of a

S : o : bels in our experiments iSAtHome’, 'AtWork’, 'Shop-
significant locations visited by a user along with the temporal ing’, "DiningOut’, 'Visiting’, ‘Others’}. Attribute Id serves
and spatial attributes. ' X ' y

lational cli | is simil lational as the primary key. The class also contains temporal infor-
A relational clique templat€’ € Cis similarto arelational  at0n associated with an activity, suchTasieOfDay Day-
database querg(g, SQL) in that it selects tuples from an in-

tior- th itis d d d OfWeek and Duration, whose values are discretized when
stantiationZ; the query result is denoted 8%7). We extend  hocessary. Finallylaceis a reference attribute that points
the definition of such templates in two ways. First, we allow

¢ to a Place entity where the activity has been performed.
a template to sele@ggregationsf tuples. For example, We pjace The class Place includes two boolean attribubéar-
can group tuples and define potentials over counts or oth

2 fth q : d | i Festaurantand NearStore which indicate whether there are
statistics of the groups. Second, we introdiadeel-specific restaurants or stores nearby.

cliques whose structures depend on values of the labels. Fof,qition - Transition captures temporal succession relation-
example, our model can construct a clique over all activitie hip among activities. The reference attribufesm and To

labeled as “AtHome.” Because labels are hidden during iNtefer to a pair of consecutive activities.

ference, such cliques potentially involve all the labels. Label- Based on the schema, we define the following relational

specific cliques can be specified by allowing label attributest"que templates. Each of them takes into account a number
to be used in the “Where” clause of an SQL query. of discriminative features

Each clique templat€' is associated with a potential func- _ o )
tion ¢ (ve) that maps a tuple (values of variables or aggre- 1. Temporalpatterns: Different activities often_have d!ffer-
gations) to a non-negative real number. Using a log-linear ~ €nt temporal patterns, such as their duration or time of
combination of feature functions, we get the following repre-  day. Such local patterns are modeled by clique templates
sentationgc(ve) = exp{wg -fo(ve)}, wherefo() defines that connect each attribute with the activity label.
a feature vector fo€ andw, is the transpose of the corre- 2. Geographicevidence: Information about the types of
sponding weight vector. For instance, a feature could be the  businesses close to a location can be extremely useful

number of different homes defined using aggregations. to determine a user’s activity. Such information can be

For a specific instantiatiof, an RMN defines a condi- extracted from geographic databases, such as Microsoft
tional distributionp(y|x) over labelsy given the observed MapPomt_[Harlhara_net al, 2005_3 used in our experi-
attributesx. To compute such a conditional distribution, the ~ ments. Since location information in such databases is
RMN generates annrolled Markov network, in which the not accurate enough, we consider such information by
nodes correspond to the content attributes and the label at- checking whether, for example, a restaurant is within a
tributes. The cliques of the unrolled network are built by ap- ~ certain range from the location.

plying each clique templat€ < C to the instantiation, which 3. Transitionrelations: The first-order transitions between
can result in several cliques per template (see Fig. 1(b) for  activities can also be informative. For example, stay-
an example). All cliques that originate from the same tem- ing at home followed by being at work is very common
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Figure 1:(a) The schema of the relational activity model. Dashed lines indicate reference relations among classes. (b) An example of an
unrolled Markov network with six activity locations. Solid straight lines indicate cliques generated by the templates of temporal, geographic,
and transition features; bold solid curves represent spatial constraints (activity 1 and 4 are associated with the same place and so are 2 and 5);
dashed curves stand for global features, which generate label-specific cBgiesctivity 1 and 4 are both labeled 'AtHome”).

while dining out immediately followed by another din- by using MCMC for inferenc¢Gilks et al,, 1994. In a nut-
@ng out is rare. The SQL query for this cligue template shell, whenever the label of an object is changed during sam-

is: pling, we determine all cliques that could be affected by this
SELECT al.Label, a2.Label change and re-compute their potentials.

FROM Activity al, Activity a2, Transition t We first implemented MCMC using basic Gibbs sampling.
WHERE t.From=al.ld AND t.To=a2.ld Unfortunately, this technique performs poorly in our model

because of the strong dependencies among labels. To make
similar. In other words. the number of different tvoes of MCMC mix faster, we first make an additional spatial con-
activitiés in a place is o,ften limited. We can exprgss Sud}straintthat all activities occurring in the same place must have

: : . he same label (the relaxation of this constraint will be ad-
a constraint using an aggregation functicount() dressed in future work). This hard constraint allows us to

4. Spatialconstraints: Activities at the same place are often

SELECT COUNT(DISTINCT Label) put all activities occurring in the same place into a so-called
FROM Activity block We then develop a mixture of two transition kernels
GROUP BY Place that converges to the correct posterior.

5. Global features: Such features model global, soft con- The first kernel is a block Gibbs sampler. At each step we
straints on activities of a person. The number of differ-update the labels in a block simultaneously by sampling from
ent home locations is an example of global constraintsthe full conditional distribution
Such a constraint is modeled by a clique template that T
selects all places labeled as home and returns how many Wk | Y-k, x, W) o exp{w" - f(x,y_r Uys)} (4)

of them are different: wherek is the index of the blocky; is the label of blocke,
SELECT COUNT(DISTINCT Place) y_i are the labels for blocks other thanThe second kernel
FROM Activity is a Metropolis-Hasting (MH) sampler. To update the label
WHERE Label="AtHome’ for block &k, the MH sampler randomly picks a blogkand

Note that the label variable appears in the “Where”proposes to exchange labglandy;. The acceptance rate of
clause, so this is an example of label-specific clique. Irthe proposal follows as

a different activity recognition context, global features T g ,

could also model information such as “the number of aly,y') = min (1, exp{w” - f(x,y )}) (5)
times a person has lunch per day.” exp{w’ - f(x,y)}

In the first three templates, the feature functidp$) are  wherey andy’ are the labels before and after the exchange,
just indicator functions that return binary values. They canrespectively.
also return numbers, such as in the last two templates. The numbers of different homes and workplaces are stored
in the chains as global variables. This allows us to compute
theglobalfeaturedocally in both kernels: in the Gibbs kernel
we increase or decrease the numbers depending on the labels
3.1 Labeling Activities of the given block and in the MH kernel the numbers remain

In our application, the task of inference is to estimate the Ia-imaCt' At each time step, we choose the Gibbs sampler with
bels of activities given a sequence of locations visited by Jrobabilityy, and the MH sampler with probability — .

person. To do so, our RMN converts a location sequence intg o Supervised Learning
unrolled Markov networks, as illustrated in Fig. 1(b). Infer- We show how to learmenericactivity models from labeled
ence in our relational activity model is complicated by the fact Y Y

activity sequences ofV different users. Learning aus-
that the structure of the unrolled Markov network can Chang‘?omizgdm(?del for an individual user is a special cgase when

during inference because of the label-specific cliques. Usingy — 1. The parameters to be learned are the feature weights
standard belief propagation in such networks would requirgy that define clique potentials in (3). To avoid overfitting,
the construction of cliques over all labels, which is obviouslywe perform maximum a posterior (MAP) parameter estima-
inefficient[Taskaret al, 2004. We overcome this problem tion and impose an independent Gaussian prior with constant

3 Inference and Learning



variance for each componen_twf, i.e, p(w) o eX_P{—(W - input : the weightsw provided by the optimizer
W) - (w — p)/20%}, wherey is the mean and? is the vari- output: L(w) andV L(w)
ance . We define the MAP objective function as tiegative :
> L S - S /[Evaluate the gradier’y L(w)
log-likelihood of training data froniV subjects plus the prior: foreach subject; do

N Run MCMC withw and getM s_amples;
Liw) = Y {-logP(y; |x;,w)} - logp(w) Get feature count differencaf | (1 < i < M) ;
i=1 end
N Compute the gradier’¥ L(w) using Eq. (8) ;
(w—p)"- (Ww—p)
D W f(x5.y5) +log Z(xj, W)} + 5 37— (6) | J/Evaluate the objective valug(w)
i=1 if First time calling this functiorthen

where; ranges over different users agd are the activity L(fz)) - L(‘Z)) =0w=w; .
labels for each user. Since (6) is convex, the global minimum ~ Af; 7 =Afj7 for1 <j < N1 <i< M;
can be found using standard optimization algoritieskar else )

et al, 2004. We apply the quasi-Newton technique to find ComputeL(w) using Eq. (7) ;

the optimal weight§Sha and Pereira, 20DEach iteration of if L{w) < L(w) then ,

this technique requires the value and gradient of (6) compute L(w) = L(w), w = w ;

_ ! nd gradien 50 _ A p(®) , - .
at the weights returned in the previous iteration. dAfj =Afj forl<j<N1<i<M;
en

o

Evaluating the objective function end
It can be intractable to compute exact objective values in (6) Algorithm 1: MCMC-based algorithm for simultaneously
for all but the simplest cases. This is due to the fact that, evaluating objective function and its gradient.
for a specificw, it is necessary to evaluate the partition func-
tion Z(x;, w), which requires summation over all possible la- _ .
bel configurations. We approximate the objective value usingvhereAf}” = f(xj,yy)) — f(x;,y,) is the difference be-
Monte-Carlo method§Geyer and Thompson, 19p2Sup-  tween thé sampled and the empirical feature counts.
pose we already know the value bfw) for a weight vector )
w. Then for each subjegt we use our MCMC inference to ﬁ:lgorlthm 7 and @ oth reatire the dif
< (i) : oy we compare (7) an , we see both require the difference
gﬁ:i(,)vr: gnd(Tm §a~rT;pleT$;1{Jen(L1(§)zca§nZ\ge),;rorrr(l))t:;;sénas. between the sampled and the empirical feature counts. While
y 1 X W) w PP * samples in (7) are based on the weigftsthose in (8) are

N 1 X o based onw. Therefore, if we always keep the best weight
L(w) = L(w) + Z{log(ﬁ > exp{(w —w)" - AE})} estimate asv, we can reuse the sampled feature counts from
j=1 i=1 gradient estimation, thereby making objective value evalua-
w=p)T (w=p)— (W=7 (W= p) tion very efficient.
+ 202 @ Our algorithmsimultaneouslyestimates at each iteration

) () ) ) the value and the gradient of the negative log-likelihood (6)

whereAf;” = f(x;,y;") — f(x;,y;) is the difference be-  for given weightsw. These estimates are used by the quasi-

tween sampled feature counts usikigand the empirical fea-  Newton approach to compute new weights, and then the esti-

ture counts in the labeled data. _ mation is repeated. As shown in Alg. 1, bdthw) andL(w)
Eq. (7) can only be used to estimate values ok) relative  are injtialized a®) and thus all the objective values are evalu-

to L(w). Fortunately, such relative values are sufficient for ateq relative to the objective value of initial weights. In later

the purpose of optimization. It can be shown that the best apterations, when we find a better weight estimate that makes

prOX|rr]natl?n in ((17) Is obta;ne_d v;{hew Is clcise t'(t)hthe O%tggea' L(w) less than(w), we updatex with the neww and also

w. Therefore, during optimization, our algorithm u s N #(i : )

with better weight esgtirrfates whenever pogssible. P I(;egp the newl (w) andAfJ( )<1 <jsNl<is< M). By )

oing that, we not only evaluate objective values very effi-

Evaluating the gradient ciently, but are also able to get more accurate approximations

The gradient of the objective functiol,L(w), equals to the asw approaches closer to the optimal weights.

difference between the sampled feature counts and the em-

pirical feature counts, plus a prior term. To generate thedl Experiments

?ampled fesature counts hundwr, I\J,\t/e'rigw?m rgn MCMC Im- To evaluate our location-based activity recognition technique,
Grnee.  SUPPOse We have obiailitll random sambies, - we collected two sets of location data using wearable GPS
y; (1 <1 < M), from the distributionP(y | x;,w). We  units. The first data set (called “single”) contains location

can compute the gradient as: traces from a single person over a time period of four months
N W= (see Fig. 2). Itincludes abouo visits to50 different places.
VL(w) = Y {Ew[f(x;,y)] — £(x;, 7))} + — The second data set (called “multiple”) was collected by five
j=1 7 different people, about one week for each. Each person’s data
N M ‘ W include25 to 35 vi:?‘it_s and10 to 15 different places. V\_/e ex-
~ Z{i Z Af](’)} + 72“ (8) t_racted pIa_ces / visits from the GPS logs _by detectlng loca-
= M~ o tions at which a person spends more thaminutesHariha-



ran and Toyama, 2004Each instance corresponds to an ac-
tivity. We then clustered nearby activity locations into places.
For training and evaluation, we let the subjects manually label
the types of activities. Then, we trained the models and tested
their accuracy. Accuracy was determined by the activities for
which the most likely labeling was correct.

Applying learned models to other people

In practice, it is of great value to learn a generic activity
model that can be immediately applied to new users without tHom¢ | !
additional training. In this experiment, we used the “mul- ® DiningOut 4 Visiting [ | |4 Othe
tiple” data set and performed leave-one-subject-out crosszigyre 2: Part of the locations contained in the “single” data set,

validation: we trained using data from four subjects, andollected over a period of four months-@xis is 8 miles long).
tested on the remaining one. The average error rates are indi-

cated by the white bars in Fig. 3(a). By using all the features!mproved learning through priors extracted from others
the generic models achieved an average error rat8%f It ~ When estimating the weights of RMNSs, a prior is imposed
can be seen that global features and spatial constraints signifs order to avoid overfitting. Without additional information,
icantly improve classification. To gage the impact of differenta zero mean Gaussian is typically used as the ffiaskar
habits on the results, we also performed the same evaluaticgt al., 2004. [Peng and McCallum, 2004lemonstrated that
using the “single” data set. In this case, we used one-monthetter accuracy can been achieved if feature-dependent vari-
data for training and the other three-month data for test, andnces are used. Our experiment shows that performance can
we repeated the validation process for each month. The realso be improved by estimating the prior means of the weights
sults are shown by the gray bars in Fig. 3(a). In this case, thé: in Eq. (6)) using data collected from other people.
models achieved an error rate of offf{ by using all the fea- In this experiment, we compared the models of a spe-
tures. This experiment shows that it is possible to learn googific person trained using a zero-mean prior with the models
activity models from groups of people. It also demonstratedrained using an estimated prior. In the latter case, we first
that models learned from more “similar” people can achievdearned the feature weights from other people and used those
higher accuracy. This indicates that models can be improveds the mean of the Gaussian prior. We evaluated the perfor-
by grouping people based on their activity patterns. mance for different amounts of training data available for the
Table 1 shows the confusion matrix of one experiment ortest person. The results are shown in Fig. 3(c), in which the
generic models (rightmost white bar in Fig. 3(a)). As can beerror rates are counted only on thevelplaces,i.e., places
seen, our approach is able to perfectly label homes and workhat were not visited in the training data and thus often very
places. The technique performs surprisingly well on the otheirregular. We can see that using data from others to generate a
activities, given that they are extremely difficult to distinguish prior boosts the accuracy significantly, especially when only
based on location information alone. The confusion matrixsmall amounts of training data are available.
also shows that simply labeling places by the most frequent The Bayesian prior allows the model to smoothly shift

activity (home) would result in an error rate of 62%. from generic to customized: On one end, when no data
from the given subject are available, the approach returns the
Inferred labels generic (prior) model; on the other end, as more labeled data
Truth [ Home | Work | Shop | Dining | Visit | Other become available, the model adjusts more and more to the
Home =7 5 ) ) 3 3 specific patterns of the user.
Work 0 34 0 0 0 0 Additional experiments
Shop 0 0 8 2 0 4 For comparison, we also built basic HMMs in which the hid-
Dining 0 0 3 6 0 4 den states are the labels and all the observations are inde-
Visit 0 0 1 0 4 3 pendent given the states. Parameter estimation in HMMs
Other 0 0 6 1 2 15 with labeled data is done via frequency counting. The most

Table 1: Confusion matrix of cross-validation on generic models likely labels can be found using the Viterbi algorithm. In the
with all features. one-month-training cross-validation on the “single” data set,

, i the HMM produced an average error rate2df1% by using
To evaluate the impact of number of people available fofhe temporal, geographic, and transition featuteBecause
model learning, we trained our model using data from dif-of the advantages of discriminative learning, even using the
ferent numbers of subjects and tested on the remaining ongyme features, RMNs performed better than HMMs and re-
(all features were used). The average error rates of the crosgyced the relative error rate by abdots.
validation are shown in Fig. 3(b). When trained using only i a separate set of experiments, we tested the performance
one subject, the system does not perform well (error rate 0hf our MCMC sampler. By visualizing the standard Gelman-

35%), mainly because many patterns specific to that persorin statistic{Gilks et al, 1996 generated from parallel
are applied onto others. When more subjects are used for

training, the patterns being learned are more generic and the *Spatial constraints and global features do not satisfy the first-
models achieve significantly higher accuracy. order Markov assumption and thus are difficult to model as HMMs.
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Figure 3: (a) Error rates of models using different features: White bars represent errors of models learned from data collected by other
people, and gray bars are for models learned and tested using data collected by the same person (“Previous” means all previous features
are also used). (b) Error rates of generic models with respect to different numbers of training subjects. (c) Error rates of zero-mean prior
vs. priors learned from other people. (d) Convergence comparison of MCMC using diffé&se@t:R statistics approachingindicates good
convergencey = 0 corresponds to using only MH sampler apg- 1 corresponds to the block Gibbs sampler).

chains, we observed that by combining the Gibbs and th&eferences

MH kernels, MCMC converged much faster than using only[ashbrook and Starner, 20DD. Ashbrook and T. Starner. Using
one of them (see Fig. 3(d)). All results reported here were Gps to learn significant locations and predict movement across

achieved with a mixing parameter= 0.5 (see Section 3). multiple users. IrPersonal and Ubiquitous Computing003.
[Geyer and Thompson, 19pZ. J. Geyer and E. A. Thompson.
5 Conclusions and Future Work Constrained Monte Carlo Maximum Likelihood for dependent

. L . data.Journal of Royal Statistical Socigt¥992.
In this paper, we presented a discriminative relational AP[Gilks et al, 1994 W.R. Gilks, S. Richardson. and D.J. Spiegel-

proach for_ activity recog_nition based on the. framewor.k.Of halter. Markov Chain Monte Carlo in PracticeChapman and
RMNs, which are well-suited to model constraints for activity  51/crc. 1996.

recognitio_n. W‘? showed hO\.N to p?‘rform efficient inferenCe[Hariharan and Toyama, 20DR. Hariharan and K. Toyama.
and learning using MCMC with a mixture of kernels. Project Lachesis: parsing and modeling location histories. In
Using our relational a_pproach, we (_je_veloped gnd tested a Geographic Information Scienc2004.
specific model for location-based activity recognition. The[yarihararet al, 200§ R. Hariharan, J. Krumm, and E. Horvitz.
results are very promising: the system is able to learn mod- \web-enhanced GPS. limternational Workshop on Location-
els that can accurately label human activities solely based on and Context-Awarenes2005.
GPS data. We demonstrated that spatial and global featur¢gumar and Hebert, 2003S. Kumar and M. Hebert. Discrimina-
are very important to achieve good recogpnition rates. We also tive random fields: A discriminative framework for contextual
showed how to obtain good priors using data from other peo- interaction in classification. IRroc. of the International Confer-
ple so as to learn an improved model for a specific person that ence on Computer Vision (ICC\)003.
requires less labeled data. [Lafferty et al, 2001 J. Lafferty, A. McCallum, and F. Pereira.
We plan to extend our model in a number of ways. First, Conditional random fields: Probabilistic models for segmenting
by collecting data from more subjects, we can learn a set of and labeling sequence data.Rroc. of the International Confer-
generic models by clustering the subjects based on their sim- €nce on Machine Learning (ICM[2001.
ilarities; then we can use a mixture of these models to betlLiaoetal, 2004 L. Liao, D. Fox, and H. Kautz. Learning and
ter recognize activities of a new person. Second, we will inferring transportation routines. Iroc. of the National Con-
relax the hard spatial constraint of one activity per location ference on Artificial Intelligence (AAAIZ004.
and thus recognize different activities performed at the samEeng and McCallum, 2004F. Peng and A. McCallum. Accurate
place. Third, we will integrate information from other wear- information extraction from research papers using conditional
able sensorse(g, microphones or accelerometers) into our _andom fields. IHLT-NAACL 2004. ,
general framework, thereby enabling much finer-grained aclPhiliposeet al, 2004 M. Philipose, K.P. Fishkin, M. Perkowitz,
tivity recognition. We will also apply the model to the prob- D.J. Patterson, D. Hhnel, D. Fox, and H. Kautz. Inferring ADLs
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