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Abstract

In this paper we define a general framework for ac-
tivity recognition by building upon and extending
Relational Markov Networks. Using the example
of activity recognition from location data, we show
that our model can represent a variety of features
including temporal information such as time of
day, spatial information extracted from geographic
databases, and global constraints such as the num-
ber of homes or workplaces of a person. We de-
velop an efficient inference and learning technique
based on MCMC. Using GPS location data col-
lected by multiple people we show that the tech-
nique can accurately label a person’s activity loca-
tions. Furthermore, we show that it is possible to
learn good models from less data by using priors
extracted from other people’s data.

1 Introduction
Activity recognition and context-aware computing are gain-
ing increasing interest in the AI and ubiquitous computing
communities. Most existing systems have been focused on
relatively low level activities within small environments or
during short periods of time. In this paper, we describe a
system that can recognize high level activities (e.g., work-
ing, shopping, and dining out) over many weeks. Our system
uses data from a wearable GPS location sensor, and is able to
identify a user’s significant places, and learn to discriminate
between the activities performed at these locations — includ-
ing novel locations. Such activity information can be used in
many applications. For example, it could be used to automat-
ically instruct a user’s cell phone not to ring when dining at a
restaurant, or it could support home rehabilitation of people
suffering from traumatic brain injuries[Salazaret al., 2000]
by providing automatic activity monitoring. Beyond estimat-
ing high-level activity categories, our system can be expanded
to incorporate additional sensor information, thereby recog-
nizing fine-grained indoor household tasks, such as those de-
scribed in[Philiposeet al., 2004].

Because behavior patterns can be highly variable, a reliable
discrimination between activities must take several sources
of evidence into account. Our system considers (1) tempo-
ral information such as time of day; (2) spatial information

extracted from geographic databases, including information
about the kinds of businesses in various locations; (3) sequen-
tial information such as which activity follows which activ-
ity; and (4) global constraints such as the number of different
homes or workplaces. Additionally, it uses data collected by
other users so as to improve the classification of a specific
user’s activities. All these constraints aresoft: for example,
on some days a person may do something unusual, such as go
to a movie in the middle of a workday. Furthermore, the norm
for some individuals may be different than our general com-
monsense prior: for example, some people work two jobs, or
shuttle between two different homes. It is necessary to use a
rich and flexible language to robustly integrate such a wide
variety of both local and global probabilistic constraints.

Our system builds upon previous work on extracting
places from traces of users’ movements, gathered by GPS or
other localization technologies[Ashbrook and Starner, 2003;
Hariharan and Toyama, 2004; Liaoet al., 2004]. Our work
goes beyond theirs in that our system also recognizes the
activities associated with the places. Moreover, previous
approaches to modeling personal movements and place
patterns require a large amount of training data from each
user, and cannot be generalized to new places or new users.
By contrast, our relational approach requires less individual
training data by leveraging data collected by others. In
summary, the contributions of this paper are:

1. A general framework for sensor-based activity
recognition based on Relational Markov Networks
(RMNs) [Taskaret al., 2002], which are both highly
expressive and well-suited for discriminative learning;

2. An extension of RMNs to incorporate complex, global
features usingaggregationsandlabel-specific cliques;

3. Efficient Markov-chain Monte-Carlo (MCMC) algo-
rithms for inference and learning in extended RMNs,
and in particular, an MCMC algorithm tosimultaneously
evaluate a likelihood function and its gradient;

4. Positive experimental results on real data from multiple
subjects, including evidence that we can improve accu-
racy by extracting priors from others’ data.

This paper is organized as follows. We will introduce our
relational activity model in Section 2. Inference and learning
will be discussed in Section 3, followed by experimental eval-
uations. Conclusions and future work are given in Section 5.



2 The Relational Activity Model
In this section we first discuss RMNs and our extensions.
Then we show how to use them for modeling activities.

2.1 Relational Markov Networks
RMNs are extensions of Conditional Random Fields (CRFs),
which are undirected graphical models that were developed
for labeling sequence data[Lafferty et al., 2001]. CRFs are
discriminative models that have been shown to out-perform
generative approaches such as HMMs and Markov random
fields in areas such as natural language processing[Lafferty
et al., 2001] and computer vision[Kumar and Hebert, 2003].
RMNs extend CRFs by providing a relational language for
describing clique structures and enforcing parameter sharing
at the template level. Thereby RMNs are an extremely flex-
ible and concise framework for defining features that can be
used in the activity recognition context.

An RMN consists of three parts: aschemaE for the do-
main, a set ofrelational clique templatesC, and correspond-
ing potentialsΦ. The schemaE specifies the set ofclasses
(i.e., entity types) and attributes in each class. An attribute
could be a content attribute, a label attribute, or a reference
attribute that specifies reference relation among the classes.
An instantiationI of a schema specifies the set of entities
for each class and the values of all attributes for each entity.
In our context an instantiation consists of the sequence of all
significant locations visited by a user along with the temporal
and spatial attributes.

A relational clique templateC ∈ C is similar to a relational
database query (e.g., SQL) in that it selects tuples from an in-
stantiationI; the query result is denoted asC(I). We extend
the definition of such templates in two ways. First, we allow
a template to selectaggregationsof tuples. For example, we
can group tuples and define potentials over counts or other
statistics of the groups. Second, we introducelabel-specific
cliques, whose structures depend on values of the labels. For
example, our model can construct a clique over all activities
labeled as “AtHome.” Because labels are hidden during in-
ference, such cliques potentially involve all the labels. Label-
specific cliques can be specified by allowing label attributes
to be used in the “Where” clause of an SQL query.

Each clique templateC is associated with a potential func-
tion φC(vC) that maps a tuple (values of variables or aggre-
gations) to a non-negative real number. Using a log-linear
combination of feature functions, we get the following repre-
sentation:φC(vC) = exp{wT

C ·fC(vC)}, wherefC() defines
a feature vector forC andwT

C is the transpose of the corre-
sponding weight vector. For instance, a feature could be the
number of different homes defined using aggregations.

For a specific instantiationI, an RMN defines a condi-
tional distributionp(y|x) over labelsy given the observed
attributesx. To compute such a conditional distribution, the
RMN generates anunrolled Markov network, in which the
nodes correspond to the content attributes and the label at-
tributes. The cliques of the unrolled network are built by ap-
plying each clique templateC ∈ C to the instantiation, which
can result in several cliques per template (see Fig. 1(b) for
an example). All cliques that originate from the same tem-

plate must share the same weightswC . The resulting cliques
factorize the conditional distribution as

p(y | x) =
1

Z(x)

∏
C∈C

∏
vC∈C

φC(vC) (1)

=
1

Z(x)

∏
C∈C

∏
vC∈C

exp{wT
C · fC(vC)} (2)

=
1

Z(x)
exp{wT · f}, (3)

where the normalizing partition functionZ(x) =∑
y′

∏
C∈C

∏
v′

C
∈C φC(v′C). (3) follows by moving the

products into the exponent and combining all summations
into w andf .

2.2 Relational Activity Models
We will now describe our relational activity models. Even
though we illustrate the concepts using the example of
location-based activity recognition, our model is very flexible
and can be applied to a variety of activity recognition tasks.

The schema for activity recognition based on temporal and
spatial patterns is shown in Fig. 1(a). It includes three classes:
Activity, Place, andTransition.
Activity : Activity is the central class in the domain. Its at-
tributeLabel is the only hidden variable. The set of possible
labels in our experiments is{’AtHome’, ’AtWork’, ’Shop-
ping’, ’DiningOut’, ’Visiting’, ’Others’}. Attribute Id serves
as the primary key. The class also contains temporal infor-
mation associated with an activity, such asTimeOfDay, Day-
OfWeek, and Duration, whose values are discretized when
necessary. Finally,Place is a reference attribute that points
to a Place entity where the activity has been performed.
Place: The class Place includes two boolean attributes:Near-
RestaurantandNearStore, which indicate whether there are
restaurants or stores nearby.
Transition : Transition captures temporal succession relation-
ship among activities. The reference attributesFrom andTo
refer to a pair of consecutive activities.

Based on the schema, we define the following relational
clique templates. Each of them takes into account a number
of discriminative features.

1. Temporalpatterns: Different activities often have differ-
ent temporal patterns, such as their duration or time of
day. Such local patterns are modeled by clique templates
that connect each attribute with the activity label.

2. Geographicevidence: Information about the types of
businesses close to a location can be extremely useful
to determine a user’s activity. Such information can be
extracted from geographic databases, such as Microsoft
MapPoint[Hariharanet al., 2005] used in our experi-
ments. Since location information in such databases is
not accurate enough, we consider such information by
checking whether, for example, a restaurant is within a
certain range from the location.

3. Transitionrelations: The first-order transitions between
activities can also be informative. For example, stay-
ing at home followed by being at work is very common
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Figure 1: (a) The schema of the relational activity model. Dashed lines indicate reference relations among classes. (b) An example of an
unrolled Markov network with six activity locations. Solid straight lines indicate cliques generated by the templates of temporal, geographic,
and transition features; bold solid curves represent spatial constraints (activity 1 and 4 are associated with the same place and so are 2 and 5);
dashed curves stand for global features, which generate label-specific cliques (e.g., activity 1 and 4 are both labeled ’AtHome’).

while dining out immediately followed by another din-
ing out is rare. The SQL query for this clique template
is:
SELECT a1.Label, a2.Label
FROM Activity a1, Activity a2, Transition t
WHERE t.From=a1.Id AND t.To=a2.Id

4. Spatialconstraints: Activities at the same place are often
similar. In other words, the number of different types of
activities in a place is often limited. We can express such
a constraint using an aggregation functionCount():
SELECT COUNT(DISTINCT Label)
FROM Activity
GROUP BY Place

5. Global features: Such features model global, soft con-
straints on activities of a person. The number of differ-
ent home locations is an example of global constraints.
Such a constraint is modeled by a clique template that
selects all places labeled as home and returns how many
of them are different:
SELECT COUNT(DISTINCT Place)
FROM Activity
WHERE Label=’AtHome’

Note that the label variable appears in the “Where”
clause, so this is an example of label-specific clique. In
a different activity recognition context, global features
could also model information such as “the number of
times a person has lunch per day.”

In the first three templates, the feature functionsfC() are
just indicator functions that return binary values. They can
also return numbers, such as in the last two templates.

3 Inference and Learning

3.1 Labeling Activities

In our application, the task of inference is to estimate the la-
bels of activities given a sequence of locations visited by a
person. To do so, our RMN converts a location sequence into
unrolled Markov networks, as illustrated in Fig. 1(b). Infer-
ence in our relational activity model is complicated by the fact
that the structure of the unrolled Markov network can change
during inference because of the label-specific cliques. Using
standard belief propagation in such networks would require
the construction of cliques over all labels, which is obviously
inefficient [Taskaret al., 2002]. We overcome this problem

by using MCMC for inference[Gilks et al., 1996]. In a nut-
shell, whenever the label of an object is changed during sam-
pling, we determine all cliques that could be affected by this
change and re-compute their potentials.

We first implemented MCMC using basic Gibbs sampling.
Unfortunately, this technique performs poorly in our model
because of the strong dependencies among labels. To make
MCMC mix faster, we first make an additional spatial con-
straint that all activities occurring in the same place must have
the same label (the relaxation of this constraint will be ad-
dressed in future work). This hard constraint allows us to
put all activities occurring in the same place into a so-called
block. We then develop a mixture of two transition kernels
that converges to the correct posterior.

The first kernel is a block Gibbs sampler. At each step we
update the labels in a block simultaneously by sampling from
the full conditional distribution

P (yk | y−k,x,w) ∝ exp{wT · f(x,y−k ∪ yk)} (4)

wherek is the index of the block,yk is the label of blockk,
y−k are the labels for blocks other thank. The second kernel
is a Metropolis-Hasting (MH) sampler. To update the label
for block k, the MH sampler randomly picks a blockj and
proposes to exchange labelyk andyj . The acceptance rate of
the proposal follows as

a(y,y′) = min
(

1,
exp{wT · f(x,y′)}
exp{wT · f(x,y)}

)
(5)

wherey andy′ are the labels before and after the exchange,
respectively.

The numbers of different homes and workplaces are stored
in the chains as global variables. This allows us to compute
theglobal featureslocally in both kernels: in the Gibbs kernel
we increase or decrease the numbers depending on the labels
of the given block and in the MH kernel the numbers remain
intact. At each time step, we choose the Gibbs sampler with
probabilityγ, and the MH sampler with probability1− γ.

3.2 Supervised Learning
We show how to learngenericactivity models from labeled
activity sequences ofN different users. Learning acus-
tomizedmodel for an individual user is a special case when
N = 1. The parameters to be learned are the feature weights
w that define clique potentials in (3). To avoid overfitting,
we perform maximum a posterior (MAP) parameter estima-
tion and impose an independent Gaussian prior with constant



variance for each component ofw, i.e., p(w) ∝ exp{−(w−
µ)T · (w− µ)/2σ2}, whereµ is the mean andσ2 is the vari-
ance . We define the MAP objective function as thenegative
log-likelihood of training data fromN subjects plus the prior:

L(w) ≡
N∑

j=1

{− log P (yj | xj ,w)} − log p(w)

=

N∑
j=1

{−wT· f(xj ,yj) + log Z(xj ,w)}+
(w−µ)T· (w−µ)

2σ2
(6)

wherej ranges over different users andyj are the activity
labels for each user. Since (6) is convex, the global minimum
can be found using standard optimization algorithms[Taskar
et al., 2002]. We apply the quasi-Newton technique to find
the optimal weights[Sha and Pereira, 2003]. Each iteration of
this technique requires the value and gradient of (6) computed
at the weights returned in the previous iteration.

Evaluating the objective function
It can be intractable to compute exact objective values in (6)
for all but the simplest cases. This is due to the fact that,
for a specificw, it is necessary to evaluate the partition func-
tionZ(xj ,w), which requires summation over all possible la-
bel configurations. We approximate the objective value using
Monte-Carlo methods[Geyer and Thompson, 1992]. Sup-
pose we already know the value ofL(w̃) for a weight vector
w̃. Then for each subjectj, we use our MCMC inference to
get M random samples,̃y(i)

j (1 ≤ i ≤ M), from the distri-
bution P (y | xj , w̃). ThenL(w) can be approximated as:

L(w) ≈ L(w̃) +

N∑
j=1

{log(
1

M

M∑
i=1

exp{(w − w̃)T ·∆f̃
(i)
j })}

+
(w − µ)T · (w − µ)− (w̃ − µ)T · (w̃ − µ)

2σ2
(7)

where∆f̃ (i)
j = f(xj , ỹ

(i)
j ) − f(xj ,yj) is the difference be-

tween sampled feature counts usingw̃ and the empirical fea-
ture counts in the labeled data.

Eq. (7) can only be used to estimate values ofL(w) relative
to L(w̃). Fortunately, such relative values are sufficient for
the purpose of optimization. It can be shown that the best ap-
proximation in (7) is obtained wheñw is close to the optimal
w. Therefore, during optimization, our algorithm updatesw̃
with better weight estimates whenever possible.

Evaluating the gradient
The gradient of the objective function,∇L(w), equals to the
difference between the sampled feature counts and the em-
pirical feature counts, plus a prior term. To generate the
sampled feature counts underw, we again run MCMC in-
ference. Suppose we have obtainedM random samples,
y(i)

j (1 ≤ i ≤ M), from the distributionP (y | xj ,w). We
can compute the gradient as:

∇L(w) =
N∑

j=1

{Ew[f(xj ,y)]− f(xj ,yj)}+
w − µ

σ2

≈
N∑

j=1

{ 1
M

M∑
i=1

∆f (i)
j }+

w − µ

σ2
(8)

input : the weightsw provided by the optimizer
output: L(w) and∇L(w)

//Evaluate the gradient∇L(w)
foreachsubjectj do

Run MCMC withw and getM samples;
Get feature count difference∆f

(i)
j (1 ≤ i ≤ M ) ;

end
Compute the gradient∇L(w) using Eq. (8) ;

//Evaluate the objective valueL(w)
if First time calling this functionthen

L(w̃) = L(w) = 0; w̃ = w ;
∆f̃

(i)
j = ∆f

(i)
j for 1 ≤ j ≤ N ,1 ≤ i ≤ M ;

else
ComputeL(w) using Eq. (7) ;
if L(w) < L(w̃) then

L(w̃) = L(w); w̃ = w ;
∆f̃

(i)
j = ∆f

(i)
j for 1 ≤ j ≤ N ,1 ≤ i ≤ M ;

end
end

Algorithm 1 : MCMC-based algorithm for simultaneously
evaluating objective function and its gradient.

where∆f (i)
j = f(xj ,y

(i)
j ) − f(xj ,yj) is the difference be-

tween the sampled and the empirical feature counts.

Algorithm
If we compare (7) and (8), we see both require the difference
between the sampled and the empirical feature counts. While
samples in (7) are based on the weightsw̃, those in (8) are
based onw. Therefore, if we always keep the best weight
estimate as̃w, we can reuse the sampled feature counts from
gradient estimation, thereby making objective value evalua-
tion very efficient.

Our algorithmsimultaneouslyestimates at each iteration
the value and the gradient of the negative log-likelihood (6)
for given weightsw. These estimates are used by the quasi-
Newton approach to compute new weights, and then the esti-
mation is repeated. As shown in Alg. 1, bothL(w̃) andL(w)
are initialized as0 and thus all the objective values are evalu-
ated relative to the objective value of initial weights. In later
iterations, when we find a better weight estimate that makes
L(w) less thanL(w̃), we updatẽw with the neww and also
keep the newL(w̃) and∆f̃ (i)

j (1 ≤ j ≤ N, 1 ≤ i ≤ M). By
doing that, we not only evaluate objective values very effi-
ciently, but are also able to get more accurate approximations
asw̃ approaches closer to the optimal weights.

4 Experiments
To evaluate our location-based activity recognition technique,
we collected two sets of location data using wearable GPS
units. The first data set (called “single”) contains location
traces from a single person over a time period of four months
(see Fig. 2). It includes about400 visits to50 different places.
The second data set (called “multiple”) was collected by five
different people, about one week for each. Each person’s data
include25 to 35 visits and10 to 15 different places. We ex-
tracted places / visits from the GPS logs by detecting loca-
tions at which a person spends more than10 minutes[Hariha-



ran and Toyama, 2004]. Each instance corresponds to an ac-
tivity. We then clustered nearby activity locations into places.
For training and evaluation, we let the subjects manually label
the types of activities. Then, we trained the models and tested
their accuracy. Accuracy was determined by the activities for
which the most likely labeling was correct.

Applying learned models to other people
In practice, it is of great value to learn a generic activity
model that can be immediately applied to new users without
additional training. In this experiment, we used the “mul-
tiple” data set and performed leave-one-subject-out cross-
validation: we trained using data from four subjects, and
tested on the remaining one. The average error rates are indi-
cated by the white bars in Fig. 3(a). By using all the features,
the generic models achieved an average error rate of18%. It
can be seen that global features and spatial constraints signif-
icantly improve classification. To gage the impact of different
habits on the results, we also performed the same evaluation
using the “single” data set. In this case, we used one-month
data for training and the other three-month data for test, and
we repeated the validation process for each month. The re-
sults are shown by the gray bars in Fig. 3(a). In this case, the
models achieved an error rate of only7% by using all the fea-
tures. This experiment shows that it is possible to learn good
activity models from groups of people. It also demonstrates
that models learned from more “similar” people can achieve
higher accuracy. This indicates that models can be improved
by grouping people based on their activity patterns.

Table 1 shows the confusion matrix of one experiment on
generic models (rightmost white bar in Fig. 3(a)). As can be
seen, our approach is able to perfectly label homes and work-
places. The technique performs surprisingly well on the other
activities, given that they are extremely difficult to distinguish
based on location information alone. The confusion matrix
also shows that simply labeling places by the most frequent
activity (home) would result in an error rate of 62%.

Inferred labels
Truth Home Work Shop Dining Visit Other
Home 57 0 0 0 0 0
Work 0 34 0 0 0 0
Shop 0 0 8 2 0 4

Dining 0 0 3 6 0 4
Visit 0 0 1 0 4 3
Other 0 0 6 1 2 15

Table 1: Confusion matrix of cross-validation on generic models
with all features.

To evaluate the impact of number of people available for
model learning, we trained our model using data from dif-
ferent numbers of subjects and tested on the remaining one
(all features were used). The average error rates of the cross-
validation are shown in Fig. 3(b). When trained using only
one subject, the system does not perform well (error rate of
35%), mainly because many patterns specific to that person
are applied onto others. When more subjects are used for
training, the patterns being learned are more generic and the
models achieve significantly higher accuracy.

AtHome AtWork Shopping
DiningOut Visiting Others

Figure 2: Part of the locations contained in the “single” data set,
collected over a period of four months (x-axis is 8 miles long).

Improved learning through priors extracted from others
When estimating the weights of RMNs, a prior is imposed
in order to avoid overfitting. Without additional information,
a zero mean Gaussian is typically used as the prior[Taskar
et al., 2002]. [Peng and McCallum, 2004] demonstrated that
better accuracy can been achieved if feature-dependent vari-
ances are used. Our experiment shows that performance can
also be improved by estimating the prior means of the weights
(µ in Eq. (6)) using data collected from other people.

In this experiment, we compared the models of a spe-
cific person trained using a zero-mean prior with the models
trained using an estimated prior. In the latter case, we first
learned the feature weights from other people and used those
as the mean of the Gaussian prior. We evaluated the perfor-
mance for different amounts of training data available for the
test person. The results are shown in Fig. 3(c), in which the
error rates are counted only on thenovelplaces,i.e., places
that were not visited in the training data and thus often very
irregular. We can see that using data from others to generate a
prior boosts the accuracy significantly, especially when only
small amounts of training data are available.

The Bayesian prior allows the model to smoothly shift
from generic to customized: On one end, when no data
from the given subject are available, the approach returns the
generic (prior) model; on the other end, as more labeled data
become available, the model adjusts more and more to the
specific patterns of the user.

Additional experiments
For comparison, we also built basic HMMs in which the hid-
den states are the labels and all the observations are inde-
pendent given the states. Parameter estimation in HMMs
with labeled data is done via frequency counting. The most
likely labels can be found using the Viterbi algorithm. In the
one-month-training cross-validation on the “single” data set,
the HMM produced an average error rate of21.1% by using
the temporal, geographic, and transition features.1 Because
of the advantages of discriminative learning, even using the
same features, RMNs performed better than HMMs and re-
duced the relative error rate by about10%.

In a separate set of experiments, we tested the performance
of our MCMC sampler. By visualizing the standard Gelman-
Rubin statistics[Gilks et al., 1996] generated from parallel

1Spatial constraints and global features do not satisfy the first-
order Markov assumption and thus are difficult to model as HMMs.
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Figure 3: (a) Error rates of models using different features: White bars represent errors of models learned from data collected by other
people, and gray bars are for models learned and tested using data collected by the same person (“Previous” means all previous features
are also used). (b) Error rates of generic models with respect to different numbers of training subjects. (c) Error rates of zero-mean prior
vs. priors learned from other people. (d) Convergence comparison of MCMC using differentγ’s: G-R statistics approaching1 indicates good
convergence (γ = 0 corresponds to using only MH sampler andγ = 1 corresponds to the block Gibbs sampler).

chains, we observed that by combining the Gibbs and the
MH kernels, MCMC converged much faster than using only
one of them (see Fig. 3(d)). All results reported here were
achieved with a mixing parameterγ = 0.5 (see Section 3).

5 Conclusions and Future Work
In this paper, we presented a discriminative relational ap-
proach for activity recognition based on the framework of
RMNs, which are well-suited to model constraints for activity
recognition. We showed how to perform efficient inference
and learning using MCMC with a mixture of kernels.

Using our relational approach, we developed and tested a
specific model for location-based activity recognition. The
results are very promising: the system is able to learn mod-
els that can accurately label human activities solely based on
GPS data. We demonstrated that spatial and global features
are very important to achieve good recognition rates. We also
showed how to obtain good priors using data from other peo-
ple so as to learn an improved model for a specific person that
requires less labeled data.

We plan to extend our model in a number of ways. First,
by collecting data from more subjects, we can learn a set of
generic models by clustering the subjects based on their sim-
ilarities; then we can use a mixture of these models to bet-
ter recognize activities of a new person. Second, we will
relax the hard spatial constraint of one activity per location
and thus recognize different activities performed at the same
place. Third, we will integrate information from other wear-
able sensors (e.g., microphones or accelerometers) into our
general framework, thereby enabling much finer-grained ac-
tivity recognition. We will also apply the model to the prob-
lem of estimating a person’s indoor activities from RFID sen-
sor data. By incorporating constraints such as “a person typi-
cally has lunch once per day,” we expect strong improvements
over the results reported in[Philiposeet al., 2004].
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