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Abstract— While Iterative Closest Point (ICP) algorithms
have been successful at aligning 3D point clouds, they do not
take into account constraints arising from sensor viewpoints.
More recent beam-based models take into account sensor noise
and viewpoint, but problems still remain. In particular, good
optimization strategies are still lacking for the beam-based
model. In situations of occlusion and clutter, both beam-based
and ICP approaches can fail to find good solutions. In this
paper, we present both an optimization method for beam-
based models and a novel framework for modeling observation
dependencies in beam-based models using over-segmentations.
This technique enables reasoning about object extents and
works well in heavy clutter. We also make available a ground-
truth 3D dataset for testing algorithms in this area.

I. INTRODUCTION
The problem of aligning 3D models to scenes is a common

one in robotics, with typical applications being tabletop
manipulation [1], [2], object tracking [3], and articulated
pose estimation [4], [5]. The problem is usually broken
up into two phases. In the first, the detection phase, the
presence of an object or part is inferred and one or more
hypothesized (rough) poses are generated. In the second,
the pose estimation phase, more precise poses are produced
after exploring the space of poses and comparing candidates.
In this paper, we examine the problem of pose estimation,
with a particular focus on heavy clutter and occlusion. We
assume a sensor that produces dense range images, such as
the Microsoft Kinect.

The standard method for reasoning about alignment of 3D
models in range data is Iterative Closest Point (ICP). Since
ICP looks only at 3D points, it throws away information
about the viewpoint from which the scene points were
generated. As an alternative, beam-based sensor models can
be used to take into account the protrusion of the model
into free-space in the scene (e.g., left side of Fig. 1). While
beam-based models can more precisely align object models
by reasoning about free-space and occlusion, they suffer
from several drawbacks, especially in cluttered scenes. In
this paper, we present a practical method for pose alignment
in the presence of clutter and occlusion that extends existing
beam models by enforcing consist reasoning among depen-
dent observations. We provide the following contributions:
• We propose a novel formulation of beam-based prob-

abilistic sensor models which eliminates many of the
false optima which occur in existing models. We do this

M. Krainin and D. Fox are with the Department of Computer Sci-
ence & Engineering, University of Washington, Seattle, WA 98195, USA.
{mkrainin,fox}@cs.washington.edu

K. Konolige is with Willow Garage Inc., Menlo Park, CA 94025, USA.
konolige@willowgarage.com

This work was funded in part by ONR MURI grant N00014-09-1-1052.

Fig. 1: Scene with clutter and occlusion. Matching the small
box based on its 3D model is problematic. ICP will match the
model with free-space protrusions, as on the occluded box at
left. The beam model will find the correct match there, but
will prefer to embed the smaller box model into the larger
box, where the whole front surface matches.

by relaxing the standard beam independence assumption
and exploiting the regularity of environments that is
reflected in range data. This technique allows us to
reason about extents of physical objects in a sensor
model framework.

• We present a gradient-based search method for pose
optimization using beam-based sensor models. We show
that this technique is more consistently able to produce
high-quality poses than ICP in the presence of clutter
and occlusion.

• The code from this paper is available as an open source
ROS1 package with Ecto2 Python bindings. We also
make available all test data used in our evaluations.
Unlike existing datasets for pose estimation from range
data, ours emphasizes heavy clutter and occlusion.

We begin in Section II with an overview of related work.
We then review beam-based sensor models in Section III
and present a gradient-based approach to optimizing these
models. In Section IV we introduce our segmentation-based
sensor model to overcome some of the short-comings of
independent beam models. Section V contains experimental
results. Conclusions and future work are discussed in Sec-
tion VI.

II. RELATED WORK

A broad range of techniques exist for performing object
pose estimation. These vary both in the error function and

1http://ros.org
2http://ecto.willowgarage.com



the search algorithm used to optimize it.
Some examples of criteria used in error functions are 2D

point features [1], 3D point features [6], [7], and Chamfer
matching [8]. Point feature matching, typically combined
with RANSAC for geometric consistency, give good results
provided sufficiently many and sufficiently distinctive fea-
tures can be detected. Chamfer matching and related tech-
niques can provide reliable detection even under occlusion
but tend to have difficulty estimating full 6 DoF poses
without multiple viewpoints.

Most commonly used with range data are error functions
for explicit matching of surface geometry. The Iterative
Closest Point (ICP) algorithm [9] attempts to minimize the
sum of squared distances of points from the model to their
respective closest points in the range image. ICP therefore
makes use of range image pixels which have been given
correspondences to the model but ignores others such as
measurements of the background that provide information
about the free-space in the scene.

Another class of error function for pose estimation is
beam-based probabilistic sensor models (e.g., [10], [11],
[12]). Unlike the ICP error metric, beam-based sensor models
explicitly treat cases such as occlusion and measurements
beyond the expected surface. We show that this metric
actually performs quite poorly at selecting among distinct
local optima, especially in the presence of occlusion. We
propose a relaxation to the beam independence assumption
used in these sensor models that removes false optima such
as shown in the right-hand side of Fig. 1.

To our knowledge, no one has previously used gradient-
based search over beam-based sensor models, likely because
they are notorious for their discontinuous nature. Existing
techniques are purely sample-based, relying for instance on
coarse-to-fine grid search a single dimension at a time [11] or
annealed particle filters [3]. Despite all the caution regarding
the use of gradient-based search, we have found that with
only minimal considerations for smoothness, gradient-based
search over a beam-based sensor model produces correct
poses more consistently than ICP. The more difficult problem
appears to be in selecting among a handful of local optima,
for which we propose a novel sensor model, relaxing stan-
dard beam-independence assumptions.

III. INDEPENDENT BEAM MODEL

We begin by reviewing beam-based sensor models and
then present a gradient-based approach for optimizing over
these models.

A. Beam Model

Let D = {d1, . . . , dN} be measurements from a single
frame of our depth sensor. For a given model M, our goal
is to find the transformation T ∗ of the model which best
aligns the model with the sensor data. Because the sensor
data comes from a viewpoint via a set of sensor beams, it is
called a beam model.

Fig. 2: Piecewise sensor model used in IBM. On the x-axis is
the beam measurement di. d∗i is the expected measurement
from the model. Not to scale.

We formulate the problem in a maximum likelihood
framework, in which T ∗ is estimated as

T ∗ = argmax
T

p(D|M, T ). (1)

The standard assumption of mutually independent beams,
which we will refer to as the Independent Beam Model
(IBM), yields

p(D|M, T ) =
∏
i

p(di|M, T ). (2)

The term p(di|M, T ) can in principle consider many types
of information, for instance depths, normals, and colors
(see [13], [12]). For this paper, we just consider the depth
component. Given M (e.g., a triangle mesh) and T , we
render a mesh model of the object, resulting in a virtual depth
map. Each measurement di has a corresponding expected
measurement d∗i in the virtual depth map.

When the expected measurement d∗i 6= ∅, we use the 3-
component, piecewise model shown in Fig. 2. This function
is uniform for di � d∗i (occlusion of the expected surface),
Gaussian about d∗i with standard deviation σd for di ≈ d∗i
(near the expected surface) and uniform low probability
for di � d∗i (beyond the expected surface). The crossover
between components occurs where the Gaussian and uniform
components are equal.

For d∗i = ∅, we use a uniform distribution out to a
maximum range. There is also some probability assigned to
invalid sensor measurements. Beam models such as this are
commonly used in the robotics literature [10].

Using IBM for pose estimation has two nice properties:

1) It handles occlusions by allowing beams to terminate
in front of the model without too large a penalty. Thus
the large value of the distribution in front of d∗i .

2) It handles protrusions into free-space by penalizing
beams that go through the model with a larger penalty.
Hence in Figure 1, the match on the left-hand side
would be penalized relative to the correct fit.

B. Optimization

Optimization involves finding the pose that maximizes the
likelihood in Equation 1. Converting this to negative log



likelihoods from Equation 2 yields the sum

T ∗ = argmin
T

∑
i

−log[p(di|M, T )]. (3)

If p were a Gaussian distribution, the above equation could be
rewritten as minimizing a quadratic cost term (the exponent
of the Gaussian), and handed to a standard nonlinear least-
squares solver. Even in the case of a non-Gaussian PDF, the
maximum likelihood result can be estimated by using the
negative log likelihood as the cost term [14]. The advantage
of doing this is that we can leverage existing algorithms,
thereby simplifying implementation and improving extensi-
bility. Nonlinear least squares requires Jacobians, which we
compute numerically by reprojecting the model with slight
changes in its transform. Surprisingly, there seem to be no
examples of using nonlinear least squares optimization with
the beam model in the literature.

Though continuous in di and in d∗i , the independent
beam model is discontinuous with respect to motions of
M which cause d∗i to jump from a finite value to ∅ or
vice versa. Ganapathi et al. [11] take the approach of
evaluating each beam over a small pixel window, taking
maxj [log p(di|d∗j (M, T )) + λ(i, j)], where λ penalizes the
selection of a different pixel than i. We found we achieved
better results by instead summing over the window as

p(di|M, T ) =
∑
j∈W

p(i, j) · p(di|d∗j (M, T )), (4)

where p(i, j) is a 2D isotropic Gaussian with standard
deviation σp andW is a small pixel window; we have found
3x3 to be sufficient. While the function is still discontinuous
with respect to the motions described above, the windowing
introduces gradations which we have found to improve the
optimization’s convergence.

For nonlinear optimization, we utilize the g2o graph opti-
mization framework [15], essentially a Levenberg-Marquardt
technique. The graph contains vertices for the sensor and the
object model poses. Each pixel in the image is represented
as an edge connecting the two vertices. Associated with each
edge is the negative log likelihood for that pixel givenM and
T . Error function and (numeric) Jacobian evaluations during
the optimization prompt re-rendering of M in new poses,
followed by computations of negative log likelihoods. By
using the g2o framework, it becomes quite straightforward
to later add additional types of constraints such as feature
correspondences if desired.

The optimization technique works well vis-a-vis ICP, and
we compare them in Section V-B.1. It is usually able to find
the correct pose for the model, given a strategy for recovering
a set of local minima around the initial pose estimate. An
example of the improvement given by IBM optimization is
shown in Fig. 3.

IV. SEGMENTED BEAM MODEL

While IBM performs well in finding good local minima, it
has problems in evaluating those minima to find the best one.
As an example, consider the scenario shown in Fig. 1. Here

Fig. 3: Example usage of free-space constraints. (left) Box
against which to align. (center) Incorrect pose resulting
from ambiguity in the ICP error function. (right) Free-space
constraints in the IBM optimization resolve the ambiguity.

IBM selects the best pose as one that embeds the smaller
box in the larger one, since a larger percentage of the beams
actually match the model, rather than being penalized for
occlusion as in the correct match. One way to understand
this problem is to say that scene surfaces matching the model
should not extend beyond the model. The individual beams
are not independent, but are considered as belonging to a
coherent set of surfaces.

To formalize this idea, we use an (over-)segmentation of
D into locally consistent segments S = {S1, . . . , SM} to
provide a better approximation to the likelihood function.
The segments in S should be mutually exclusive, collectively
exhaustive, and sufficiently fine-grained to ensure that mea-
surements belonging to distinct objects in the environment
will not combine into a larger segment. We will describe
one technique to achieve such a segmentation in Section V.
Given a segmentation S, we approximate the data likelihood
as

p(D|M, T ) =
∏
Si∈S

p(Si|M, T ). (5)

Let mi be an indicator variable for whether sensor readings
within the segment Si were generated from the model
M. We compute the segment likelihood p(Si|M, T ) by
marginalizing over mi:

p(Si|M, T ) =
∑

m∈{0,1}

p(Si,mi = m|M, T ) (6)

=
∑

m∈{0,1}

p(Si|M, T,mi = m) · p(mi = m|M, T ). (7)

p(mi|M, T ) is a prior probability that a segment is gen-
erated from the model rather than, for instance, background
or occluders in the scene. The performance of our algorithm
is quite insensitive to the value of this term; for simplicity,
we set it to 0.5.
p(Si|M, T,mi) is the segment likelihood conditioned on

whether the segment was generated by M. By performing
this segment classification, we can evaluate the entire seg-
ment according to either a peaked distribution (for mi = 1)
or a broad distribution (for mi = 0). The typical indepen-
dence assumption of (2) would instead force us to make this
decision independently for each pixel, resulting in problem
cases such as in Fig. 1.

Only after the intermediate step of (7) do we proceed to
apply a mutual independence assumption to the individual



beams. That is, the beams are considered conditionally
independent given mi:

p(Si|M, T,mi) =
∏

dj∈Si

p(dj |M, T,mi). (8)

As before, p(dj |M, T,mi) is the probability for an individ-
ual beam, now given a segment interpretation. If mi = 1,
we expect the measurement to have been generated by M
and apply a Gaussian sensor model over the depth. The
negative log likelihood (up to a constant) is then min((dj −
d∗j )

2/(2σ2
d), t), where t is a cutoff for robustness. If mi = 0,

we instead use uniform distributions corresponding to those
used in IBM (the blue and red lines in Fig. 2).

The Segmented Beam Model (SBM) penalizes embedding
a smaller model surface within a larger scene surface. Figure
4 shows a typical example where SBM eliminates a false
positive produced by IBM.

The careful reader may ask why we did not directly
optimize SBM. As SBM includes an assignment step in
the form of the indicator variables, a more sophisticated
optimization technique like expectation maximization may
be called for. We leave the investigation of this problem as
future work.

V. RESULTS

We implemented the optimization algorithm in C++ with
model rendering using OpenGL and per-pixel negative log
likelihoods evaluated using CUDA. As currently imple-
mented, it takes approximately 1 millisecond to render the
depth map and subsequently compute the per-pixel negative
log likelihood map on an NVIDIA GeForce GTS 450 graph-
ics card. We perform approximately 500 such renderings per
nonlinear optimization. Other systems for evaluating sensor
models on graphics cards (e.g. [11]) suggest that additional
optimizations and a high-end graphics card could give at least
an order of magnitude improvement in speed.

Evaluating SBM requires a segmentation S. We imple-
mented a simple raster-scanning connected components al-
gorithm, with thresholds for out-of-plane distance (1.5 mm)
and difference in normals (8◦). We compare with neighbors
2 pixels away rather than the immediate neighbor since
the normal estimation procedure has a strong smoothing
effect. The thresholds are set such that under-segmentation
is rare. A downside of the connected components approach
is that small “bridges” can connect otherwise quite distinct
segments, so the thresholds must be set conservatively. More
sophisticated segmentation algorithms may reduce the need
to over-segment. Over-segmentation is acceptable; in the
limit of single pixel segments, SBM reverts to IBM.

A. Qualitative Properties of the Sensor Models

We examine the difference between IBM and SBM in
terms of their response in cluttered scenes. Fig. 4 depicts a
small juice carton and a larger cereal on a table (top left). For
IBM, there are two local minima for the juice carton: one on
the juice carton, and one embedded in the larger cereal box.
The middle image is a response map along XY dimensions,

Fig. 4: Matching a juice carton into a scene. (top left)
Frame being matched against. (top center) Segmentation of
the range image. (top right) Carton mesh model. (middle,
bottom) Error functions for the Independent Beam Model and
the Segmented Beam Model respectively. Heat maps depict
negative log likelihoods as the carton model is translated
along the two degrees of freedom of the table plane; red is
high cost, blue is low cost. Here, we restrict to two degrees
of freedom for visualization purposed only. Notice that SBM
eliminates the incorrect minimum along the face of the box.

as the juice carton model is moved around the table. Note
the very broad line where the juice carton is embedded in
different parts of the cereal box. IBM does not penalize
model surfaces that are embedded in larger surfaces, and so
the response is the same as where the juice carton matches to
itself. In the presence of clutter, this model tends to generate
false positives for pose estimates on other surfaces, especially
if the correct match is partially occluded.

By contrast, the segmentation model SBM, shown in
Fig. 4 bottom, has a clear minimum on the juice carton.
The elongated minimum is completely eliminated, since
embedding the juice carton model in the larger cereal box
segment is penalized by (7). Note that the response map is
very similar in other respects.

B. Pose Estimation

Few datasets currently exist for matching 3D models
into range images, especially with clutter and occlusion.
The RGB-D Object Dataset [16] contains some cluttered
scenes; however, it is labeled for object detection, not for
pose estimation. The Solutions In Perception Challenge3 is
labeled for pose estimation but includes only very minimal

3http://opencv.willowgarage.com/wiki/
SolutionsInPerceptionChallenge



Abbreviation Object
A All detergent
Cl Clorox bleach
Co Coke can
OJ OJ carton
So Soup can
Sp Spam can
Ti Tilex spray
To Toothpaste bottle
Z Ziploc bags

TABLE I: The nine objects included in our test data along
with their abbreviations used in later figures.

clutter and occlusion. We therefore elected to collect our
own test data4. For each of nine objects listed in Table I,
we collected an average of five scenes. A scene consists of
a range image of an object in the presence of clutter and/or
occlusion. Additionally, each scene contains an RGB image
and a ground truth object pose derived from a calibration
pattern in the image.

In the following experiments, we perform multiple trials
per scene, with each trial having a different initial pose.
The initial poses are generated by perturbing the ground
truth pose by 2 to 4 centimeters in translation and 20 to
30 degrees in rotation about a randomly selected axis. For
both ICP and our IBM optimization, we allow 20 random
restarts. We deem a trial to be successful if the resulting
pose is within 1.5 centimeters in translation and 10 degrees in
rotation. Rotationally symmetric objects are not penalized for
rotations about their axis of symmetry. The results in Table II
and Table III are generated using a Gaussian approximation
to the posterior beta distribution over frequency correct.

1) Optimization Results: Before considering how to dis-
tinguish between local optima, we need to make sure we
are generating the correct optimum as one of the candidates.
In our first pose estimation experiment, we compare ICP
alignment to the IBM gradient-based optimization described
in Section III-B. The ICP algorithm we use includes a
number of common tweaks including a point-to-plane error
metric, hard thresholding on correspondence length, rejection
of boundary-point correspondences, and trimming of the
longer remaining correspondences. The ICP optimization
was also performed using g2o’s LM implementation.

In Table II, we estimate the frequency with which the two
optimization techniques include a correct pose among their
20 restart results; the overall frequency of correct poses is
bounded by this value. Across the board, IBM does at least
as well and in many cases better than ICP.

We show some example failure cases in Fig. 5. In ICP,
problems can arise such as inability to resolve a particular
degree of freedom (as in Fig. 5a), or being pulled away
by a nearby surface. IBM avoids many of these problems
by penalizing poses which place parts of the model into
volumes that have been observed as unoccupied. Fig. 5b
shows an example where these cues are largely unavailable
due to the occlusion at the ends of the Ziploc box. As a

4All code and test data for this paper is available at:
http://ros.org/wiki/Papers/ICRA2012_Krainin_Konolige_Fox

(a) ICP

(b) IBM

Fig. 5: Example failure cases for the two optimization
techniques; original scene on the left, pose optimum on the
right, with the Ziploc box model overlaid in red. In ICP (top),
free-space protrusions occur because free-space information
is not used. IBM failures (bottom) can occur when occlusion
is present blocking all edges along one direction.

result, the model is improperly translated so that one face
matches the surface of the cereal box. Cases like this, where
a model can span multiple object surfaces without violating
free-space constraints, suggest there might be some value in
adding segmentation information into the local optimization
in addition to the global evaluation.

2) Evaluation Results: In Table III, we present the fre-
quency of correct poses for different evaluation functions.
Each function is given as input the random restart results
from the IBM optimization. In almost all cases, SBM
performs better or at least as well as the other evaluation
functions. As illustrated in Fig. 6a, both ICP Mean Squared
Error (ICP MSE) and IBM can match to similarly shaped
objects in cluttered scenes. This is particularly a problem for
IBM because when the true surface is occluded, a similarly
shaped but unoccluded surface results in a higher likelihood.

SBM solves this problem by eliminating most alternative
optima based on surface size criteria. Of course, if other,
similarly sized and similarly shaped surfaces exist in the
scene, the corresponding optima may still be selected. SBM
does introduce the possibility for a different type of failure
caused by under-segmentation. An example is shown in
Fig. 6b in which there is insufficient difference in normals
or depth to distinguish the Ziploc box from the cereal box.
The result is that matches using this surface are penalized,
and an erroneous pose is selected instead.

Table III clearly demonstrates the advantage of using SBM
over IBM, but it is important to note that IBM is simply a
special case of SBM (Fig. 7c). Segmentations can vary from
being very over-segmented to being under-segmented, and



Optimization A Cl Co OJ So Sp Ti To Z Total
ICP 0.85± 0.10 0.98± 0.04 0.81± 0.11 0.73± 0.11 0.87± 0.09 0.88± 0.09 0.98± 0.05 0.83± 0.10 0.79± 0.10 0.86± 0.03
IBM 0.88± 0.09 0.98± 0.04 0.98± 0.04 0.84± 0.09 0.98± 0.04 0.94± 0.06 0.98± 0.05 0.85± 0.10 0.82± 0.09 0.93± 0.02

TABLE II: Frequency of correct pose estimates being among the random restart results. 95% confidence intervals.

Evaluation A Cl Co OJ So Sp Ti To Z Total
ICP MSE 0.88± 0.07 0.99± 0.03 0.65± 0.11 0.66± 0.10 0.92± 0.06 0.70± 0.10 0.98± 0.03 0.62± 0.11 0.74± 0.09 0.79± 0.03
IBM 0.57± 0.11 0.99± 0.03 0.66± 0.10 0.51± 0.10 0.75± 0.10 0.60± 0.11 0.98± 0.03 0.48± 0.11 0.54± 0.10 0.67± 0.04
SBM 0.74± 0.10 0.99± 0.03 0.96± 0.04 0.75± 0.09 0.99± 0.03 0.95± 0.05 0.98± 0.03 0.81± 0.09 0.55± 0.10 0.85± 0.03

TABLE III: Frequency of correct pose estimates for various evaluation techniques for selecting between random restart-based
proposals. 95% confidence intervals.

(a) ICP MSE + IBM

(b) SBM

Fig. 6: Example failure cases for the restart evaluation
functions. (a) ICP MSE and IBM sometimes select matches
to similarly shaped, though differently sized objects, as with
this toothpaste bottle. (b) Under-segmentation in SBM leads
to a lack of surfaces against which to match. Here the Ziploc
bags and cereal box are segmented as the same object.

this has an effect on the quality of the resulting sensor model.
Fig. 7a shows the frequency of correct poses on the Spam
can data as a function of the granularity of our segmentation.
We vary the angular threshold of our connected components
algorithm to produce a range of segmentations (examples in
Fig. 7c-e). As this figure demonstrates, we are able to achieve
substantial improvement over IBM without requiring a per-
fect segmentation. As the threshold continues to increase, we
eventually see some under-segmentation (Fig. 7e).

C. Object Model Selection

Finally, we consider the problem of distinguishing the
identity of an object based on the pose quality metrics we
have presented. In applications such as grasping, the problem
may arise that an object is known to be in a certain region,
but its identity is unknown [17] (see Fig. 8).

In the experiment shown in Table IV, we aligned each
of the nine object models to each of the scenes using
the IBM optimization. We then scored the poses of each
model using one of the three evaluation functions to select
a model. Table IV presents the confusion matrices for the
three evaluation functions.

IBM performs much better than ICP MSE in terms of
object confusion even though ICP MSE proved the better of
the two techniques for pose selection in Table III. In the
context of model selection, IBM’s behavior of increasing
its score with greater numbers of near-surface beams is
beneficial rather than detrimental. Whereas ICP MSE suffers
from matching a small object (the toothpaste bottle) to larger
surfaces, IBM selects the appropriately sized object because
it explains more of the beams. So in this problem, IBM
has many of the desirable properties as SBM, and the two
perform fairly comparably.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an extension to standard beam-based
models which, through the addition of another layer to the
probabilistic model, incorporates segment information into
its likelihood function. The key insight is that we can exploit
the regularities in our sensor data to consistently reason about
pixels both inside and outside of the model silhouette. Our
model provides a notion of surface extents, which we have
shown has a major impact on the ability to correctly select
between optima in cluttered and occluded scenes.

We have also presented a gradient-based approach to opti-
mizing a beam-based sensor model. We used this technique
to generate candidates for our Segmented Beam Model and
showed its advantages over ICP for these purposes. Finally,
we constructed a pose estimation dataset focusing on scenes
with heavy clutter and occlusion. We have made available
all code and test data associated with this project.

In the future, there are a number of interesting directions
to explore. We hope to examine the advantages of different
segmentation algorithms to help avoid problematic under-
segmentations. Though the problem of generating perfect
segmentations is far from solved, we believe that consistently
over-segmenting is a much simpler problem. Also beneficial
would be to detect failed segmentations based on the number
of pixels marked as being generated by the model; this would
trigger a more conservative segmentation.

A number of extensions such as color information could
be used in conjunction with SBM. Color images could be
applied both to improve segmentation and to better dis-
criminate between local optima. It is worth noting that the
objects in our test data are all highly textured (they are the
same objects used in the Solutions In Perception Challenge),
so color information would likely give an unusually large
performance gain.



A Cl Co OJ So Sp Ti To Z
A 2 1 2
Cl 2 3
Co 5
OJ 5 1
So 2 1 2
Sp 5
Ti 1 1 1 1
To 5
Z 6

(a) ICP MSE

A Cl Co OJ So Sp Ti To Z
A 5
Cl 5
Co 2 1 2
OJ 5 1
So 4 1
Sp 4 1
Ti 4
To 5
Z 1 5

(b) IBM

A Cl Co OJ So Sp Ti To Z
A 4 1
Cl 5
Co 4 1
OJ 6
So 5
Sp 5
Ti 4
To 5
Z 1 1 4

(c) SBM

TABLE IV: Confusion matrices for nine objects. Model poses from the IBM optimization were evaluated using the three
evaluation functions. Total correct of 28, 39, and 42 respectively (out of 46).
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Fig. 7: (a) Frequency of correct pose estimates as a function
of the granularity of the segmentation. Finer segmentation
occurs for smaller values of the angular threshold. (b)
Example frame from the dataset. (c)-(e) Segmentations for
thresholds of 0◦, 8◦, and 12◦ respectively. Note the under-
segmentation in (e).
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