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Abstract— In this work we address joint object category and
instance recognition in the context of RGB-D (depth) cameras.
Motivated by local distance learning, where a novel view of
an object is compared to individual views of previously seen
objects, we define a view-to-object distance where a novel view is
compared simultaneously to all views of a previous object. This
novel distance is based on a weighted combination of feature dif-
ferences between views. We show, through jointly learning per-
view weights, that this measure leads to superior classification
performance on object category and instance recognition. More
importantly, the proposed distance allows us to find a sparse
solution via Group-Lasso regularization, where a small subset
of representative views of an object is identified and used, with
the rest discarded. This significantly reduces computational cost
without compromising recognition accuracy. We evaluate the
proposed technique, Instance Distance Learning (IDL), on the
RGB-D Object Dataset, which consists of 300 object instances
in 51 everyday categories and about 250,000 views of objects
with both RGB color and depth. We empirically compare IDL to
several alternative state-of-the-art approaches and also validate
the use of visual and shape cues and their combination.

I. INTRODUCTION

Visual recognition of objects is a fundamental and chal-
lenging problem and a major focus of research for computer
vision, machine learning, and robotics. In the past decade,
a variety of features and algorithms have been proposed
and applied to this problem, resulting in significant progress
in object recognition capabilities, as can be seen from
the steady improvements on standard benchmarks such as
Caltech101 [7].

The goal of our work is to study the recognition problem
at both the category and the instance level, on objects that we
commonly use in everyday tasks. Category level recognition
involves classifying objects as belonging to some category,
such as coffee mug or soda can. Instance level recognition is
identifying whether an object is physically the same object
as one that has previously been seen. Most recognition
benchmarks are constructed using Internet photos at the
category level only, but the ability to recognize objects at
both levels is crucially important if we want to use such

This work was funded in part by an Intel grant, by ONR MURI grants
N00014-07-1-0749 and N00014-09-1-1052, by the NSF under contract IIS-
0812671, and through the Robotics Consortium sponsored by the U.S. Army
Research Laboratory under Cooperative Agreement W911NF-10-2-0016.

Kevin Lai and Liefeng Bo are with the Department of Computer Sci-
ence & Engineering, University of Washington, Seattle, WA 98195, USA.
{kevinlai,lfb}@cs.washington.edu

Xiaofeng Ren is with Intel Labs Seattle, Seattle, WA 98105, USA.
xiaofeng.ren@intel.com

Dieter Fox is with both the Department of Computer Science
& Engineering, University of Washington, and Intel Labs Seattle.
fox@cs.washington.edu

Fig. 1. Two distance learning approaches. (Left) Local distance learning
uses a view-to-view distance, typically followed by a k-nearest neighbor
rule. (Right) The proposed instance distance learning, where we use the
weighted average distance from a view x to an object instance Y which
consists of a set of views of the same object.

recognition systems in the context of specific tasks, such as
human activity recognition or service robotics. For example,
identifying an object as a generic “coffee mug” (category) or
as “Amelia’s coffee mug” (instance) can lead to substantially
different implications depending on the context of a task. In
this paper we use the term instance to refer to a single object.

In addition to category and instance level recognition,
we want to enrich the recognition data by taking advan-
tage of recent advances in sensing hardware. In particular,
the rapidly maturing technologies of RGB-D (Kinect-style)
depth cameras [20], [13] provide high quality synchronized
videos of both color and depth, presenting a great opportunity
for combining color- and depth-based recognition. To take
advantage of this rich new data in object recognition, the
classifier needs to combine visual and shape information.
However, not all features are always useful. Some features
may be more discriminative for certain objects, while other
features are more useful for other objects. The best features
to use may also depend on the task at hand, for example
whether we are trying to find “Amelia’s coffee mug” or just
any coffee mug (category versus instance recognition). The
recognition system should learn which features are useful
depending on the particular object and task at hand.

One successful line of work on combining heterogeneous
features is distance learning (e.g. [27], [26]), in particular
local distance learning [23]. Local distance learning has been
extensively studied and demonstrated for object recognition,
both for color images [9], [10], [18] and 3D shapes [15]. A
key property of these approaches is that they can model com-
plex decision boundaries by combining elementary distances.
Local distance learning, however, is not without issues.
For our problem setting, there are two main limitations to
overcome: (1) existing formulations of local distance learning
do not capture the relations between object categories and
specific instances under them; (2) they provide no means
for selecting representative views, or example images, of



instances and thus become very inefficient if a large number
of views are collected for each object.

The explosive growth of the web has led to the availability
of large repositories of images like Flickr and 3D models like
Google 3D Warehouse. The computer vision community has
recently released ImageNet [5], a growing database of mil-
lions of images organized according to WordNet hypernym-
hyponym relations. Although these large databases contain
a wealth of information that can potentially be used to
solve robot perception problems, it remains difficult to create
algorithms that can take advantage of these large datasets
while still retaining the efficiency required for robotics
applications.

In this paper we propose an approach to sparse Instance
Distance Learning (IDL): instead of learning per-view dis-
tances, we define and optimize a per-instance distance that
combines all views of an object instance (see Fig. 1). By
learning a distance function jointly for all views of a par-
ticular object, our approach significantly outperforms view-
based distance learning for RGB, Depth, and RGB+Depth
recognition. This result can also be motivated as subclass
classification [25], [6]. Even more importantly, joint instance
distance learning naturally leads to a sparse solution using
Group-Lasso regularization, where a sparse set of views
of each instance is selected from a large pool of views.
Thus, IDL provides a data-driven way to select informative
training examples for each object and significantly sparsify
the data set, discarding redundant views and speeding up
classification. We show that IDL achieves sparse solutions
without any decrease in performance.

II. LEARNING INSTANCE DISTANCES

In this section, we describe how to learn instance distance
functions for classification tasks in the context of image
classification. In image classification, we are given a set of
objects Y . The goal is to learn a classifier to predict category
and instance labels of images, or views, outside the training
set. One of the simplest methods to do this is to find nearest
neighbors of the test view and make a prediction based on
the labels of these nearest neighbors. In this section, we show
how to improve this approach by learning an instance dis-
tance function. We start by considering a simple classification
rule, the nearest instance classifier, which labels incoming
test images x using the label of the nearest instance (an
extension to k-nearest instances is straightforward):

cx = argmin
i,j

1

|Yij |
∑
y∈Yij

d(x, y) (1)

Here, Yij denotes the set of views taken of the j-th instance
of the i-th category. As can be seen, cx is the object that
appears most similar to the test image, averaged over its
views. d(x, y) can be any distance function between views
x and y. In this paper, we use the l2 distance d(x, y) =
‖x − y‖. The nearest instance classifier given in (1) can be
used for both category and instance recognition: The index i
provides the category and the index j gives the corresponding
instance. Unfortunately, the nearest instance classifier can

Fig. 2. Decision boundaries found by two instance distance classifiers
on a two-dimensional dataset. (Left) instance distance learning with l2
regularization. (Right) instance distance learning with data sparsification,
which retains only 8% of data (stronger colors) and still has a similar
decision boundary.

often perform poorly in practice due to the difficulties of
finding a good distance measure.

We now consider a significantly more powerful variant
by learning an instance distance function for recognition.
In many problems there are multiple features available and
the best performance is obtained by using all available
information. To do so, we replace the scalar distance d(x, y)
between two views x and y by a vector d(x, y) of separate
l2 feature distances. The corresponding instance distance
function between example x and the j-th instance of i-th
category Yij can then be written as

fij(x) =
1

|Yij |
∑
y∈Yij

w>y d(x, y) + bij (2)

where W is a set of weight vectors wy for all y ∈ Yij .
Unlike the nearest instance classifier, this significantly more
expressive distance function allows the classifier to assign
different weights to each feature and for each view, enabling
it to adapt to the data. Note that we have added a bias term,
bij , to the instance distance function to allow negative values.
The weight vector wy is D-dimensional, where D is the
number of different features extracted for each view. Note
also that each example view has a different weight vector.
Due to this, the functions do not define a true distance metric,
as they are asymmetric. This is advantageous since different
examples may have different sets of features that are better
for distinguishing them from other examples, or views.

When learning the weight vector for an instance, it is
necessary to distinguish between category and instance clas-
sification. For instance recognition, the weight Wij defining
the distance function for the j-th instance in category i can
be learned using the following l2 regularized loss function:∑

x∈Yij

L(−fij(x)) +
∑

x∈Y \Yij

L(fij(x)) + λW>
ijWij (3)

where we have chosen L(z) = max(0, 1− z)2, the squared
hinge loss. The first term penalizes misclassification of views
x ∈ Yij that belong to the same instance. The second term
similarly penalizes misclassification of negative examples, or
views, by incurring a loss when their distance is small. Note
that the negative examples also include views of different
instances that belong to the same category i. The final term is
a standard l2 regularizer, biasing the system to learn smaller
weight vectors. This objective function is convex and can be



optimized using standard optimization algorithms. Given a
test image x, we assign to it the category or instance label
of the nearest object using cx = argmini,j fij(x).

For category recognition, we learn the instance distance
by minimizing the following l2 regularized loss:∑

x∈Yi

L(−fij(x)) +
∑

x∈Y \Yi

L(fij(x)) + λW>
ijWij (4)

where Yi =
⋃Ni

s=1 Yis and Ni is the number of instances in
the i− th category. The key difference between the instance
recognition and the category recognition loss is that in the
former, only the views of the same instance are positive
examples, whereas in the latter the views of all instances
in the same category become positive examples.

Fig. 2 (left) shows the decision boundary obtained with
instance distance learning on a two-dimensional dataset. The
dataset contains two classes: red and blue. There are two
separate instances in the blue class and they lie on opposite
sides of the single red class instance. Instance distance
learning is able to find a very good decision boundary
separating the two classes.

III. EXAMPLE SELECTION VIA GROUP-LASSO

An important property of the instance distance we defined
in Section II is that it allows for data sparsification. This is
achieved by replacing l2 regularization in (3) with Group-
Lasso [28], [19], resulting in the following objective func-
tion:∑
x∈Yij

L(−fij(x)) +
∑

x∈Y \Yij

L(fij(x)) + λ
∑
y∈Yij

√
w>y wy (5)

Here, the first two terms optimize over individual compo-
nents of the instance weight vector, and the third, Group-
Lasso, term drives the weight vectors of individual views
toward zero. Group-Lasso achieves this by grouping the
weight components of individual views in the penalty term.
In contrast to previous work that make use of the Group-
Lasso for encouraging feature sparsity, here we use it to
encourage data sparsity. In other words, optimizing this
objective function yields a supervised method for choosing
a subset of representative examples, or views. If the Group-
Lasso drives an entire weight vector wy to 0, the corre-
sponding example no longer affects the decision boundary
and has effectively been removed by the optimization. The
degree of sparsity can be tuned by varying the λ parameter.
Intuitively, data sparsity is often possible because many
examples may lie well within the decision region or are
densely packed together. Removing such examples would
reduce the magnitude of the regularization term while having
little or no effect on the loss terms. Each data point is only
one of many that contribute to the instance distance and
redundant examples would not significantly influence the
decision boundary.

The advantage of data sparsification using the proposed
objective function is twofold. As explained above, the pro-
posed technique can remove redundant and uninformative
examples. Secondly, removing examples from consideration

Fig. 3. Views of objects from the RGB-D Object Dataset shown as 3D point
clouds colored with RGB pixel values. From left to right, top to bottom,
they are apple, calculator, cereal box, coffee mug, lemon, and soda can.

at test time results in computational cost savings which coun-
teracts the data-size-dependent time complexity of nearest
neighbor techniques.

For category level, the group lasso based instance distance
learning uses the following objective function∑
x∈Yi

L(−fij(x)) +
∑

x∈Y \Yi

L(fij(x)) + λ
∑
y∈Yij

√
w>y wy (6)

Fig. 2 (right) shows a data sparsification example using
instance distance learning with Group-Lasso. In this two-
dimensional dataset, the technique is able to throw away 92%
of the data and still obtain decision boundaries that closely
match the one learned without data sparsification.

IV. EXPERIMENTS

We apply the proposed instance distance learning (IDL)
to two related object recognition tasks: category recognition
and instance recognition. In category recognition, the system
is trained on several objects belonging to each category and
the task is to classify a never-before-seen object into one of
the categories. In the instance recognition task, the system is
presented with multiple views of each object, and the task is
to classify never-before-seen views of these same objects.
The experimental results in this section demonstrate that
our technique obtains good performance on both recognition
tasks, particularly when taking full advantage of both shape
and visual information available from the sensor. The tech-
nique is able to not only automatically sparsify training data,
but it also exceeds the performance of several alternative
approaches and baselines, even after sparsification. We also
apply the instance distance learning technique to object
detection and show that it is able to detect objects in a
cluttered scene.

A. Experimental Setup

We evaluate our technique on the RGB-D Object
Dataset [14], a novel dataset consisting of cropped and seg-
mented images of distinct objects spun around on a turntable.
The dataset consists of 300 object instances in 51 categories.
There are between three to twelve instances in each category.
The images are collected with an RGB-D camera that can
simultaneously record both color image and depth data at
640×480 resolution. In other words, each ‘pixel’ in the



RGB-D frame contains four channels: red, green, blue and
depth. The 3D location of each pixel in physical space can
be computed using known sensor parameters. Each object
was placed on the turntable and rotated. Data was recorded
from three viewing heights, at approximately 30, 45 and 60
degrees above the horizon. We used around 50 views at each
height, giving around 150 views per instance, or 45000 RGB
+ Depth images in total, each of which serves as a data point
in training or testing. Fig. 3 shows some example views
of objects from the data set. Each view shown here is a
3D point cloud where the points have been colored with
their corresponding RGB pixel values. The segmentation
procedure uses a combination of visual and depth cues and
is described in detail in [14].

We extract features that capture both the visual appearance
and shape of each view (image) of a particular object.
The presence of synchronized visual and 3D data greatly
enhances the amount of information available for performing
object recognition and our technique naturally combines
multiple features in a single framework. We first compute
spin images [12] for a randomly subsampled set of 3D points.
Each spin image is centered on a 3D point and captures
the spatial distribution of points within its neighborhood.
The distribution, captured in a two-dimensional 16 × 16
histogram, is invariant to rotation about the point normal.
We use these spin images to compute efficient match kernel
(EMK) features using random fourier sets as proposed in [2].
EMK features are similar to bag-of-words (BOW) features
in that they both take a set of local features and generate a
fixed length feature vector describing the bag. EMK features
approximate the Gaussian kernel between local features and
give a continuous measure of similarity. To incorporate
spatial information, we divide an axis-aligned bounding cube
around each view into a 3×3×3 grid. We compute a 1000-
dimensional EMK feature in each of the 27 cells separately.
We perform principal component analysis (PCA) on the
EMK features in each cell and take the first 100 components.
Finally, we include as shape features the width, depth and
height of a 3D bounding box around the view. This gives us
a total of 30 shape descriptors.

To capture the visual appearance of a view, we extract
SIFT [17] on a dense grid of 8×8 cells. To generate image-
level features and capture spatial information we compute
EMK features on two image scales. First we compute a
1000-dimensional EMK feature using SIFT descriptors from
the entire image. Then we divide the image into a 2 × 2
grid and compute EMK features separately in each cell from
only the SIFT features inside the cell. We perform PCA
on each cell and take the first 300 components, giving a
1500-dimensional EMK SIFT feature vector. Additionally,
we extract texton histograms [16] features, which capture
texture information using oriented gaussian filter responses.
The texton vocabulary is built from an independent set of
images on LabelMe. We also include a color histogram and
also use the mean and standard deviation of each color
channel as visual features. There are a total of 13 visual
descriptors.

B. Performance Comparisons

Given the above set of features, we evaluate the cate-
gory and instance recognition performance of the proposed
instance distance learning technique and compare it to a
number of alternative state-of-the-art classifiers:
• IDL: Our proposed instance distance learning algorithm

with l2 regularization.
• EB LOCAL: An exemplar-based local distance function

learning technique by Malisiewicz et al. [18].
• SVM: linear support vector machine
• RF: random forest classifier [3]
We follow the experimental setup in [14] to allow for

direct comparisons. For category recognition, we randomly
leave one object out from each category for testing and
train the classifier on all views of the remaining objects. For
instance recognition, we divide each video into 3 consecutive
sequences of equal length and for each object instance. There
are 3 heights (videos) for each object, so this gives 9 video
sequences for each instance. We randomly select 7 of these
for training and test on the remaining 2.

To verify that our technique is indeed able to take advan-
tage of both shape and visual information available from
the RGB-D camera, we evaluated the performance of all
the techniques using only shape-based features, only visual-
based feature, and using both shape and visual features.
Fig. 4 shows the overall classification performance of the
different algorithms on both category-level and instance-
level recognition. As can be seen from the results, our
technique substantially improves upon the performance of a
competitive exemplar-based local distance method and other
state-of-the-art classification techniques in most cases or
otherwise gets comparable performance.

Overall, visual features are more useful than shape fea-
tures for both category level and instance level recognition.
However, shape features are relatively more useful in cat-
egory recognition, while visual features are relatively more
effective in instance recognition. This is exactly what we
should expect, since a particular object instance has a fairly
constant visual appearance across views, while objects in the
same category can have different texture and color. On the
other hand, shape tends to be stable across a category in
many cases, thereby making instance recognition via shape
more difficult. The fact that combining both shape and visual
features enables our technique to perform better on both tasks
demonstrates that our technique can take advantage of both
shape and visual features.

C. Data Sparsification Results

Fig. 6 shows the classification accuracy of two data
sparsification techniques at varying levels of data sparsity:
1) running instance distance learning technique on a uniform
random downsampling of the training data and 2) our sparse
instance distance learning (IDL SPARSE). The curve for
IDL SPARSE is generated by varying the regularization
tradeoff parameter, λ. The plot shows that IDL SPARSE
is able to sparsify the data considerably (up to a factor of



Technique Classification Accuracy
Category Instance

Shape Vision All Shape Vision All
EBLocal 58.9± 2.1 70.1± 3.4 78.4± 2.8 41.2± 0.6 81.2± 0.6 84.5± 0.5
LinSVM 53.1± 1.7 74.3± 3.3 81.9± 2.8 32.4± 0.5 90.9± 0.5 90.2± 0.6

RF 66.8± 2.5 74.7± 3.6 79.6± 4.0 52.7± 1.0 90.1± 0.8 90.5± 0.4
IDL 70.2± 2.0 78.6± 3.1 85.4± 3.2 54.8± 0.6 89.8± 0.2 91.3± 0.3

Fig. 4. Classification performance of various techniques on the RGB-D data set. EBLocal is exemplar-based local distance learning, LinSVM is linear
SVM, RF is Random Forest, and IDL is the instance distance learning proposed in this paper.

Fig. 5. Confusion matrices (row-normalized) for sparse instance distance learning on (left) category recognition and (right) instance recognition.

1
5 ) without causing any significant loss in accuracy. Note
that IDL SPARSE does not necessarily converge to the
same accuracy as IDL because the techniques use different
regularization. The two techniques are only identical when
the regularization tradeoff parameter is set to 0, but this
would lead to overfitting.

Although uniform random downsampling is a naı̈ve form
of sparsification, it actually works very well on our dataset,
since uniform sampling of video frames gives good coverage
of object views. Nevertheless, the plot clearly shows that IDL
SPARSE obtains higher classification accuracy than random
downsampling across all levels of data sparsity. Fig. 7 shows
some example views retained for several objects.

Fig. 5 shows the confusion matrices between the 51 cat-
egories for category recognition (left) and the 300 instances
for instance recognition (right). In the category recognition
run, the sparse instance distance learning obtained an overall
accuracy of 83% and retained 15% of the training data. In the
instance recognition run, the technique obtained an overall
accuracy of 89.7% and retained 19% of the training data.

D. 3D Object Category Dataset

In addition to the novel RGB-D dataset that we col-
lected, we also evaluated instance distance learning (IDL)
on a publicly available image-only dataset: the 3D object
category dataset presented by Savarese et al. [22]. There
are 8 object categories in the dataset: bike, shoe, car, iron,
mouse, cellphone, stapler, and toaster. For each category, the
dataset contains images of 10 individual object instances
under 8 viewing angles, 3 heights and 3 scales for a total
number of 7000 images that are all roughly 400 × 300
pixels. We evaluated IDL on category level recognition on

Fig. 6. Number of examples retained versus classification accuracy of
two example selection techniques: 1) random downsampling and 2) sparse
instance distance learning. Accuracy of Instance distance learning is shown
for comparison.

this dataset using the same setup as [22]: we randomly select
7 instances per category for training and use the rest for
testing. The furthest scale is not considered for testing. IDL
obtains substantially higher accuracy (80.1%) than the results
reported in [22] (75.7%).

E. Object Detection

Object recognition is often more than just classifying a
cropped image of an object. For example, a robot may
be tasked to search the environment for a specific set of
objects, such as finding all coffee mugs and soda cans on
a table. This problem is referred to as object detection. In
object detection, the system is given a fixed set of objects
to search for and trains the appropriate detectors beforehand.
At test time, the system is presented with a set of images



Fig. 7. Data selection with Group-Lasso: A small set of representative
views that were chosen for several objects.

and must identify all objects of interest that are present in
the image by specifying bounding boxes around them. We
applied the instance distance learning technique to object
detection. Given the task of identifying a particular set of
objects, an instance distance classifier is trained for each
instance by using views in the particular instance as positive
examples. The set of negative examples is constructed from
views of other objects as well as a separate set of background
images that do not contain any objects the system is tasked
to find. At test time, the system is presented with a video
sequence taken from a particular scene, e.g. a kitchen area or
an office table. The system runs a sliding window detector
of a fixed size across each video frame, invoking the learned
instance distance classifier at each window. The window
sliding is done over an image pyramid to search across scales.
The classifier returns a score, which we threshold to obtain
bounding boxes. Since the distance from the camera to the
object can vary, the size of an object in the image can also
vary, so we run the sliding window detector on 20 image
scales by rescaling the image. We perform non-maximum
suppression to remove multiple overlapping detections.

The features we use for object detection differ from those
used for recognition. This is because state-of-the-art object
detection systems [4], [8] have shown histogram of oriented
gradients (HOG) features to be effective and also because
they can be efficiently computed on image windows using
convolution. We divide each image into a grid of 8 × 8
cells and extract features in each cell. As visual features, we
use a variation of HOG [8] computed on the RGB image.
This version considers both contrast sensitive and insensitive
features, where the gradient orientations in each cell (8× 8
pixel grid) are encoded using two different quantization
levels into 18 (0◦−360◦) and 9 orientation bins (0◦−180◦),
respectively. This 4 × (18 + 9) = 108-dimensional feature
vector is analytically projected into a 31-dimensional feature
as described in [8].

As depth features, we compute HOG features over the
depth image (i.e. treating the depth image as a regular
image and computing histograms of oriented gradients on it).
Additionally, we also compute a feature capturing the scale
(physical size) of the object. The distance d of an object

from the camera is inversely proportional to its scale, o. For
an image at a particular scale s, we have c = o

sd, where
c is constant. In the sliding window approach the detector
window is fixed, meaning that o is fixed. Hence, d

s , which
we call the normalized depth, is constant. We compute the
average normalized depth in 8×8 grid and use this as a scale
feature.

We evaluated the IDL classifier on the object detection task
on a video sequence of an office environment. Objects were
placed on a table and the system was tasked with finding the
soda can, coffee mug, and cap in the video sequence. The
cereal box acts as a distractor object and sometimes occludes
the objects of interest. Following the PASCAL VOC evalua-
tion metric, a candidate detection is considered correct if the
intersection of the predicted bounding box and the ground
truth bounding box is more than half of their union. Only
one of multiple successful detections for the same ground
truth is considered correct and the rest are counted as false
positives. Fig. 8 (left) shows the precision-recall curves of the
individual object detectors as well as the overall precision-
recall curve for all the objects. Each precision-recall curve
is generated by ranking the resulting detections using scores
returned by the classifier and thresholding on them. Each
threshold gives a point along the curve. We run only the
detector for the particular object to generate the precision-
recall curves for the individual objects. For the multiple-
object curve, we run all three object detectors and pool all
candidate detections across objects and generate a single
precision-recall curve. The precision-recall curves show that
IDL attains good performance on the object detection task.
Even when searching for three different objects by running
multiple detectors in the video sequence, there is only a
slight drop in the precision and recall. Fig. 8 (right) shows
an example multi-object detection. Here the system is able
to correctly locate the three objects even though there are
other objects and background clutter in the scene.

V. CONCLUSIONS

In this work we studied both object category and instance
recognition using the RGB-D Object Dataset [14], a large
RGB-D (color+depth) dataset of everyday objects. Our work
is of interest both in terms of algorithm design and of
the empirical validations on appearance and depth cues
for recognition. Our key insight is that because a category
consists of different objects, there is a natural division of a
category into subclasses, and this motivates our use of the in-
stance distance. We show that by jointly learning the weights
in this distance function, we outperform alternative state-of-
the-art approaches. The proposed instance distance learning
provides a distance measure for evaluating the similarity of
a view to a known set of objects. This information can be
used as input to other robotics tasks, such as grasping. An
interesting direction for future work is to treat the training
data as an object database where grasping information is
stored for each object. When the robot encounters an object
in the world, it can use the instance distance classifier



Fig. 8. Object detection results on a video sequence. (Left) Precision-recall curves of individual bowl, coffee mug, and soda can detectors and aggregated
detections. (Right) Example video frame with detection results.

to match the object to objects in the database to retrieve
potential grasps.

The use of Group-Lasso allows us to find a compact
representation of each object instance as a small set of views
without compromising accuracy. With the ever increasing
size of data sets available on the World Wide Web, sparsifi-
cation of such data will become more important. While the
current technique assumes an offline setting, the development
of online Group-Lasso style sparsification is an interesting
and promising direction for future work.

Finally, we showed that using both shape and visual
features achieves higher performance than either set of cues
alone for both category and instance recognition. Considering
the fast advances of RGB-D camera hardware, these results
are extremely encouraging, supporting the belief that the
combination of RGB and depth will find many uses in object
recognition, detection, and other robotics perception tasks.
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